International Conference on Computational Semantics (2019)


up

pdf (full)
bib (full)
Proceedings of the 13th International Conference on Computational Semantics - Long Papers

pdf bib
Proceedings of the 13th International Conference on Computational Semantics - Long Papers
Simon Dobnik | Stergios Chatzikyriakidis | Vera Demberg

pdf bib
Projecting Temporal Properties, Events and Actions
Tim Fernando

Temporal notions based on a finite set A of properties are represented in strings, on which projections are defined that vary the granularity A. The structure of properties in A is elaborated to describe statives, events and actions, subject to a distinction in meaning (advocated by Levin and Rappaport Hovav) between what the lexicon prescribes and what a context of use supplies. The projections proposed are deployed as labels for records and record types amenable to finite-state methods.A of properties are represented in strings, on which projections are defined that vary the granularity A. The structure of properties in A is elaborated to describe statives, events and actions, subject to a distinction in meaning (advocated by Levin and Rappaport Hovav) between what the lexicon prescribes and what a context of use supplies. The projections proposed are deployed as labels for records and record types amenable to finite-state methods.

pdf bib
A Type-coherent, Expressive Representation as an Initial Step to Language Understanding
Gene Louis Kim | Lenhart Schubert

A growing interest in tasks involving language understanding by the NLP community has led to the need for effective semantic parsing and inference. Modern NLP systems use semantic representations that do not quite fulfill the nuanced needs for language understanding : adequately modeling language semantics, enabling general inferences, and being accurately recoverable. This document describes underspecified logical forms (ULF) for Episodic Logic (EL), which is an initial form for a semantic representation that balances these needs. ULFs fully resolve the semantic type structure while leaving issues such as quantifier scope, word sense, and anaphora unresolved ; they provide a starting point for further resolution into EL, and enable certain structural inferences without further resolution. This document also presents preliminary results of creating a hand-annotated corpus of ULFs for the purpose of training a precise ULF parser, showing a three-person pairwise interannotator agreement of 0.88 on confident annotations. We hypothesize that a divide-and-conquer approach to semantic parsing starting with derivation of ULFs will lead to semantic analyses that do justice to subtle aspects of linguistic meaning, and will enable construction of more accurate semantic parsers.

pdf bib
An Improved Approach for Semantic Graph Composition with CCGCCG
Austin Blodgett | Nathan Schneider

This paper builds on previous work using Combinatory Categorial Grammar (CCG) to derive a transparent syntax-semantics interface for Abstract Meaning Representation (AMR) parsing. We define new semantics for the CCG combinators that is better suited to deriving AMR graphs. In particular, we define relation-wise alternatives for the application and composition combinators : these require that the two constituents being combined overlap in one AMR relation. We also provide a new semantics for type raising, which is necessary for certain constructions. Using these mechanisms, we suggest an analysis of eventive nouns, which present a challenge for deriving AMR graphs. Our theoretical analysis will facilitate future work on robust and transparent AMR parsing using CCG.

pdf bib
Towards a Compositional Analysis of German Light Verb Constructions (LVCs) Combining Lexicalized Tree Adjoining Grammar (LTAG) with Frame SemanticsGerman Light Verb Constructions (LVCs) Combining Lexicalized Tree Adjoining Grammar (LTAG) with Frame Semantics
Jens Fleischhauer | Thomas Gamerschlag | Laura Kallmeyer | Simon Petitjean

Complex predicates formed of a semantically ‘light’ verbal head and a noun or verb which contributes the major part of the meaning are frequently referred to as ‘light verb constructions’ (LVCs). In the paper, we present a case study of LVCs with the German posture verb stehen ‘stand’. In our account, we model the syntactic as well as semantic composition of such LVCs by combining Lexicalized Tree Adjoining Grammar (LTAG) with frames. Starting from the analysis of the literal uses of posture verbs, we show how the meaning components of the literal uses are systematically exploited in the interpretation of stehen-LVCs. The paper constitutes an important step towards a compositional and computational analysis of LVCs. We show that LTAG allows us to separate constructional from lexical meaning components and that frames enable elegant generalizations over event types and related constraints.

pdf bib
Words are Vectors, Dependencies are Matrices : Learning Word Embeddings from Dependency Graphs
Paula Czarnowska | Guy Emerson | Ann Copestake

Distributional Semantic Models (DSMs) construct vector representations of word meanings based on their contexts. Typically, the contexts of a word are defined as its closest neighbours, but they can also be retrieved from its syntactic dependency relations. In this work, we propose a new dependency-based DSM. The novelty of our model lies in associating an independent meaning representation, a matrix, with each dependency-label. This allows it to capture specifics of the relations between words and contexts, leading to good performance on both intrinsic and extrinsic evaluation tasks. In addition to that, our model has an inherent ability to represent dependency chains as products of matrices which provides a straightforward way of handling further contexts of a word.

pdf bib
Temporal and Aspectual Entailment
Thomas Kober | Sander Bijl de Vroe | Mark Steedman

Inferences regarding Jane’s arrival in London from predications such as Jane is going to London or Jane has gone to London depend on tense and aspect of the predications. Tense determines the temporal location of the predication in the past, present or future of the time of utterance. The aspectual auxiliaries on the other hand specify the internal constituency of the event, i.e. whether the event of going to London is completed and whether its consequences hold at that time or not. While tense and aspect are among the most important factors for determining natural language inference, there has been very little work to show whether modern embedding models capture these semantic concepts. In this paper we propose a novel entailment dataset and analyse the ability of contextualised word representations to perform inference on predications across aspectual types and tenses. We show that they encode a substantial amount of information relating to tense and aspect, but fail to consistently model inferences that require reasoning with these semantic properties.

pdf bib
Aligning Open IE Relations and KB Relations using a Siamese Network Based on Word EmbeddingIE Relations and KB Relations using a Siamese Network Based on Word Embedding
Rifki Afina Putri | Giwon Hong | Sung-Hyon Myaeng

Open Information Extraction (Open IE) aims at generating entity-relation-entity triples from a large amount of text, aiming at capturing key semantics of the text. Given a triple, the relation expresses the type of semantic relation between the entities. Although relations from an Open IE system are more extensible than those used in a traditional Information Extraction system and a Knowledge Base (KB) such as Knowledge Graphs, the former lacks in semantics ; an Open IE relation is simply a sequence of words, whereas a KB relation has a predefined meaning. As a way to provide a meaning to an Open IE relation, we attempt to align it with one of the predefined set of relations used in a KB. Our approach is to use a Siamese network that compares two sequences of word embeddings representing an Open IE relation and a predefined KB relation. In order to make the approach practical, we automatically generate a training dataset using a distant supervision approach instead of relying on a hand-labeled dataset. Our experiment shows that the proposed method can capture the relational semantics better than the recent approaches.

pdf bib
The Effect of Context on Metaphor Paraphrase Aptness Judgments
Yuri Bizzoni | Shalom Lappin

We conduct two experiments to study the effect of context on metaphor paraphrase aptness judgments. The first is an AMT crowd source task in which speakers rank metaphor-paraphrase candidate sentence pairs in short document contexts for paraphrase aptness. In the second we train a composite DNN to predict these human judgments, first in binary classifier mode, and then as gradient ratings. We found that for both mean human judgments and our DNN’s predictions, adding document context compresses the aptness scores towards the center of the scale, raising low out-of-context ratings and decreasing high out-of-context scores. We offer a provisional explanation for this compression effect.

pdf bib
Predicting Word Concreteness and Imagery
Jean Charbonnier | Christian Wartena

Concreteness of words has been studied extensively in psycholinguistic literature. A number of datasets have been created with average values for perceived concreteness of words. We show that we can train a regression model on these data, using word embeddings and morphological features, that can predict these concreteness values with high accuracy. We evaluate the model on 7 publicly available datasets. Only for a few small subsets of these datasets prediction of concreteness values are found in the literature. Our results clearly outperform the reported results for these datasets.

pdf bib
Learning to Explicitate Connectives with Seq2Seq Network for Implicit Discourse Relation ClassificationSeq2Seq Network for Implicit Discourse Relation Classification
Wei Shi | Vera Demberg

Implicit discourse relation classification is one of the most difficult steps in discourse parsing. The difficulty stems from the fact that the coherence relation must be inferred based on the content of the discourse relational arguments. Therefore, an effective encoding of the relational arguments is of crucial importance. We here propose a new model for implicit discourse relation classification, which consists of a classifier, and a sequence-to-sequence model which is trained to generate a representation of the discourse relational arguments by trying to predict the relational arguments including a suitable implicit connective. Training is possible because such implicit connectives have been annotated as part of the PDTB corpus. Along with a memory network, our model could generate more refined representations for the task. And on the now standard 11-way classification, our method outperforms the previous state of the art systems on the PDTB benchmark on multiple settings including cross validation.

pdf bib
Using Multi-Sense Vector Embeddings for Reverse Dictionaries
Michael A. Hedderich | Andrew Yates | Dietrich Klakow | Gerard de Melo

Popular word embedding methods such as word2vec and GloVe assign a single vector representation to each word, even if a word has multiple distinct meanings. Multi-sense embeddings instead provide different vectors for each sense of a word. However, they typically can not serve as a drop-in replacement for conventional single-sense embeddings, because the correct sense vector needs to be selected for each word. In this work, we study the effect of multi-sense embeddings on the task of reverse dictionaries. We propose a technique to easily integrate them into an existing neural network architecture using an attention mechanism. Our experiments demonstrate that large improvements can be obtained when employing multi-sense embeddings both in the input sequence as well as for the target representation. An analysis of the sense distributions and of the learned attention is provided as well.

pdf bib
Frame Identification as Categorization : Exemplars vs Prototypes in Embeddingland
Jennifer Sikos | Sebastian Padó

Categorization is a central capability of human cognition, and a number of theories have been developed to account for properties of categorization. Even though many tasks in semantics also involve categorization of some kind, theories of categorization do not play a major role in contemporary research in computational linguistics. This paper follows the idea that embedding-based models of semantics lend themselves well to being formulated in terms of classical categorization theories. The benefit is a space of model families that enables (a) the formulation of hypotheses about the impact of major design decisions, and (b) a transparent assessment of these decisions. We instantiate this idea on the task of frame-semantic frame identification. We define four models that cross two design variables : (a) the choice of prototype vs. exemplar categorization, corresponding to different degrees of generalization applied to the input ; and (b) the presence vs. absence of a fine-tuning step, corresponding to generic vs. task-adaptive categorization. We find that for frame identification, generalization and task-adaptive categorization both yield substantial benefits. Our prototype-based, fine-tuned model, which combines the best choices for these variables, establishes a new state of the art in frame identification.

up

pdf (full)
bib (full)
Proceedings of the 13th International Conference on Computational Semantics - Short Papers

pdf bib
Proceedings of the 13th International Conference on Computational Semantics - Short Papers
Simon Dobnik | Stergios Chatzikyriakidis | Vera Demberg

pdf bib
Distributional Semantics in the Real World : Building Word Vector Representations from a Truth-Theoretic Model
Elizaveta Kuzmenko | Aurélie Herbelot

Distributional semantics models (DSMs) are known to produce excellent representations of word meaning, which correlate with a range of behavioural data. As lexical representations, they have been said to be fundamentally different from truth-theoretic models of semantics, where meaning is defined as a correspondence relation to the world. There are two main aspects to this difference : a) DSMs are built over corpus data which may or may not reflect ‘what is in the world’ ; b) they are built from word co-occurrences, that is, from lexical types rather than entities and sets. In this paper, we inspect the properties of a distributional model built over a set-theoretic approximation of ‘the real world’. To achieve this, we take the annotation a large database of images marked with objects, attributes and relations, convert the data into a representation akin to first-order logic and build several distributional models using various combinations of features. We evaluate those models over both relatedness and similarity datasets, demonstrating their effectiveness in standard evaluations. This allows us to conclude that, despite prior claims, truth-theoretic models are good candidates for building graded lexical representations of meaning.

pdf bib
Making Sense of Conflicting (Defeasible) Rules in the Controlled Natural Language ACE : Design of a System with Support for Existential Quantification Using SkolemizationACE: Design of a System with Support for Existential Quantification Using Skolemization
Martin Diller | Adam Wyner | Hannes Strass

We present the design of a system for making sense of conflicting rules expressed in a fragment of the prominent controlled natural language ACE, yet extended with means of expressing defeasible rules in the form of normality assumptions. The approach we describe is ultimately based on answer-set-programming (ASP) ; simulating existential quantification by using skolemization in a manner resembling a translation for ASP recently formalized in the context of -ASP. We discuss the advantages of this approach to building on the existing ACE interface to rule-systems, ACERules.

pdf bib
Distributional Interaction of Concreteness and Abstractness in VerbNoun Subcategorisation
Diego Frassinelli | Sabine Schulte im Walde

In recent years, both cognitive and computational research has provided empirical analyses of contextual co-occurrence of concrete and abstract words, partially resulting in inconsistent pictures. In this work we provide a more fine-grained description of the distributional nature in the corpus-based interaction of verbs and nouns within subcategorisation, by investigating the concreteness of verbs and nouns that are in a specific syntactic relationship with each other, i.e., subject, direct object, and prepositional object. Overall, our experiments show consistent patterns in the distributional representation of subcategorising and subcategorised concrete and abstract words. At the same time, the studies reveal empirical evidence why contextual abstractness represents a valuable indicator for automatic non-literal language identification.

up

pdf (full)
bib (full)
Proceedings of the 13th International Conference on Computational Semantics - Student Papers

pdf bib
Proceedings of the 13th International Conference on Computational Semantics - Student Papers
Simon Dobnik | Stergios Chatzikyriakidis | Vera Demberg | Kathrein Abu Kwaik | Vladislav Maraev

pdf bib
A Dynamic Semantics for Causal Counterfactuals
Kenneth Lai | James Pustejovsky

Under the standard approach to counterfactuals, to determine the meaning of a counterfactual sentence, we consider the closest possible world(s) where the antecedent is true, and evaluate the consequent. Building on the standard approach, some researchers have found that the set of worlds to be considered is dependent on context ; it evolves with the discourse. Others have focused on how to define the distance between possible worlds, using ideas from causal modeling. This paper integrates the two ideas. We present a semantics for counterfactuals that uses a distance measure based on causal laws, that can also change over time. We show how our semantics can be implemented in the Haskell programming language.

pdf bib
Visual TTR-Modelling Visual Question Answering in Type Theory with RecordsTTR - Modelling Visual Question Answering in Type Theory with Records
Ronja Utescher

In this paper, I will describe a system that was developed for the task of Visual Question Answering. The system uses the rich type universe of Type Theory with Records (TTR) to model both the utterances about the image, the image itself and classifications made related to the two. At its most basic, the decision of whether any given predicate can be assigned to an object in the image is delegated to a CNN. Consequently, images can be judged as evidence for propositions. The end result is a model whose application of perceptual classifiers to a given image is guided by the accompanying utterance.

pdf bib
The Lexical Gap : An Improved Measure of Automated Image Description Quality
Austin Kershaw | Miroslaw Bober

The challenge of automatically describing images and videos has stimulated much research in Computer Vision and Natural Language Processing. In order to test the semantic abilities of new algorithms, we need reliable and objective ways of measuring progress. We show that standard evaluation measures do not take into account the semantic richness of a description, and give the impression that sparse machine descriptions outperform rich human descriptions. We introduce and test a new measure of semantic ability based on relative lexical diversity. We show how our measure can work alongside existing measures to achieve state of the art correlation with human judgement of quality. We also introduce a new dataset : Rich-Sparse Descriptions, which provides 2 K human and machine descriptions to stimulate interest into the semantic evaluation of machine descriptions.

pdf bib
Modeling language constructs with fuzzy sets : some approaches, examples and interpretations
Pavlo Kapustin | Michael Kapustin

We present and discuss a couple of approaches, including different types of projections, and some examples, discussing the use of fuzzy sets for modeling meaning of certain types of language constructs. We are mostly focusing on words other than adjectives and linguistic hedges as these categories are the most studied from before. We discuss logical and linguistic interpretations of membership functions. We argue that using fuzzy sets for modeling meaning of words and other natural language constructs, along with situations described with natural language is interesting both from purely linguistic perspective, and also as a knowledge representation for problems of computational linguistics and natural language processing.

pdf bib
Topological Data Analysis for Discourse Semantics?
Ketki Savle | Wlodek Zadrozny | Minwoo Lee

In this paper we present new results on applying topological data analysis to discourse structures. We show that topological information, extracted from the relationships between sentences can be used in inference, namely it can be applied to the very difficult legal entailment given in the COLIEE 2018 data set. Previous results of Doshi and Zadrozny (2018) and Gholizadeh et al. (2018) show that topological features are useful for classification. The applications of computational topology to entailment are novel in our view provide a new set of tools for discourse semantics : computational topology can perhaps provide a bridge between the brittleness of logic and the regression of neural networks. We discuss the advantages and disadvantages of using topological information, and some open problems such as explainability of the classifier decisions.

pdf bib
Semantic Frame Embeddings for Detecting Relations between Software Requirements
Waad Alhoshan | Riza Batista-Navarro | Liping Zhao

The early phases of requirements engineering (RE) deal with a vast amount of software requirements (i.e., requirements that define characteristics of software systems), which are typically expressed in natural language. Analysing such unstructured requirements, usually obtained from users’ inputs, is considered a challenging task due to the inherent ambiguity and inconsistency of natural language. To support such a task, methods based on natural language processing (NLP) can be employed. One of the more recent advances in NLP is the use of word embeddings for capturing contextual information, which can then be applied in word analogy tasks. In this paper, we describe a new resource, i.e., embedding-based representations of semantic frames in FrameNet, which was developed to support the detection of relations between software requirements. Our embeddings, which encapsulate contextual information at the semantic frame level, were trained on a large corpus of requirements (i.e., a collection of more than three million mobile application reviews). The similarity between these frame embeddings is then used as a basis for detecting semantic relatedness between software requirements. Compared with existing resources underpinned by word-level embeddings alone, and frame embeddings built upon pre-trained vectors, our proposed frame embeddings obtained better performance against judgements of an RE expert. These encouraging results demonstrate the strong potential of the resource in supporting RE analysis tasks (e.g., traceability), which we plan to investigate as part of our future work.

pdf bib
R-grams : Unsupervised Learning of Semantic Units in Natural LanguageR-grams: Unsupervised Learning of Semantic Units in Natural Language
Amaru Cuba Gyllensten | Ariel Ekgren | Magnus Sahlgren

This paper investigates data-driven segmentation using Re-Pair or Byte Pair Encoding-techniques. In contrast to previous work which has primarily been focused on subword units for machine translation, we are interested in the general properties of such segments above the word level. We call these segments r-grams, and discuss their properties and the effect they have on the token frequency distribution. The proposed approach is evaluated by demonstrating its viability in embedding techniques, both in monolingual and multilingual test settings. We also provide a number of qualitative examples of the proposed methodology, demonstrating its viability as a language-invariant segmentation procedure.




up

pdf (full)
bib (full)
Proceedings of the IWCS Shared Task on Semantic Parsing

pdf bib
Proceedings of the IWCS Shared Task on Semantic Parsing
Lasha Abzianidze | Rik van Noord | Hessel Haagsma | Johan Bos

pdf bib
Neural Boxer at the IWCS Shared Task on DRS ParsingIWCS Shared Task on DRS Parsing
Rik van Noord

This paper describes our participation in the shared task of Discourse Representation Structure parsing. It follows the work of Van Noord et al. (2018), who employed a neural sequence-to-sequence model to produce DRSs, also exploiting linguistic information with multiple encoders. We provide a detailed look in the performance of this model and show that (i) the benefit of the linguistic features is evident across a number of experiments which vary the amount of training data and (ii) the model can be improved by applying a number of postprocessing methods to fix ill-formed output. Our model ended up in second place in the competition, with an F-score of 84.5.