Antoine Rozenknop


pdf bib
Representation Learning and Dynamic Programming for Arc-Hybrid Parsing
Joseph Le Roux | Antoine Rozenknop | Mathieu Lacroix
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

We present a new method for transition-based parsing where a solution is a pair made of a dependency tree and a derivation graph describing the construction of the former. From this representation we are able to derive an efficient parsing algorithm and design a neural network that learns vertex representations and arc scores. Experimentally, although we only train via local classifiers, our approach improves over previous arc-hybrid systems and reach state-of-the-art parsing accuracy.