Aram Galstyan


2021

pdf bib
ForecastQA : A Question Answering Challenge for Event Forecasting with Temporal Text DataForecastQA: A Question Answering Challenge for Event Forecasting with Temporal Text Data
Woojeong Jin | Rahul Khanna | Suji Kim | Dong-Ho Lee | Fred Morstatter | Aram Galstyan | Xiang Ren
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Event forecasting is a challenging, yet important task, as humans seek to constantly plan for the future. Existing automated forecasting studies rely mostly on structured data, such as time-series or event-based knowledge graphs, to help predict future events. In this work, we aim to formulate a task, construct a dataset, and provide benchmarks for developing methods for event forecasting with large volumes of unstructured text data. To simulate the forecasting scenario on temporal news documents, we formulate the problem as a restricted-domain, multiple-choice, question-answering (QA) task. Unlike existing QA tasks, our task limits accessible information, and thus a model has to make a forecasting judgement. To showcase the usefulness of this task formulation, we introduce ForecastQA, a question-answering dataset consisting of 10,392 event forecasting questions, which have been collected and verified via crowdsourcing efforts. We present our experiments on ForecastQA using BERTbased models and find that our best model achieves 61.0 % accuracy on the dataset, which still lags behind human performance by about 19 %. We hope ForecastQA will support future research efforts in bridging this gap.

2019

pdf bib
Better Automatic Evaluation of Open-Domain Dialogue Systems with Contextualized Embeddings
Sarik Ghazarian | Johnny Wei | Aram Galstyan | Nanyun Peng
Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation

Despite advances in open-domain dialogue systems, automatic evaluation of such systems is still a challenging problem. Traditional reference-based metrics such as BLEU are ineffective because there could be many valid responses for a given context that share no common words with reference responses. A recent work proposed Referenced metric and Unreferenced metric Blended Evaluation Routine (RUBER) to combine a learning-based metric, which predicts relatedness between a generated response and a given query, with reference-based metric ; it showed high correlation with human judgments. In this paper, we explore using contextualized word embeddings to compute more accurate relatedness scores, thus better evaluation metrics. Experiments show that our evaluation metrics outperform RUBER, which is trained on static embeddings.

pdf bib
Deep Structured Neural Network for Event Temporal Relation Extraction
Rujun Han | I-Hung Hsu | Mu Yang | Aram Galstyan | Ralph Weischedel | Nanyun Peng
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

We propose a novel deep structured learning framework for event temporal relation extraction. The model consists of 1) a recurrent neural network (RNN) to learn scoring functions for pair-wise relations, and 2) a structured support vector machine (SSVM) to make joint predictions. The neural network automatically learns representations that account for long-term contexts to provide robust features for the structured model, while the SSVM incorporates domain knowledge such as transitive closure of temporal relations as constraints to make better globally consistent decisions. By jointly training the two components, our model combines the benefits of both data-driven learning and knowledge exploitation. Experimental results on three high-quality event temporal relation datasets (TCR, MATRES, and TB-Dense) demonstrate that incorporated with pre-trained contextualized embeddings, the proposed model achieves significantly better performances than the state-of-the-art methods on all three datasets. We also provide thorough ablation studies to investigate our model.