Aurelie Neveol

Also published as: Aurélie Névéol


2019

pdf bib
A distantly supervised dataset for automated data extraction from diagnostic studies
Christopher Norman | Mariska Leeflang | René Spijker | Evangelos Kanoulas | Aurélie Névéol
Proceedings of the 18th BioNLP Workshop and Shared Task

Systematic reviews are important in evidence based medicine, but are expensive to produce. Automating or semi-automating the data extraction of index test, target condition, and reference standard from articles has the potential to decrease the cost of conducting systematic reviews of diagnostic test accuracy, but relevant training data is not available. We create a distantly supervised dataset of approximately 90,000 sentences, and let two experts manually annotate a small subset of around 1,000 sentences for evaluation. We evaluate the performance of BioBERT and logistic regression for ranking the sentences, and compare the performance for distant and direct supervision. Our results suggest that distant supervision can work as well as, or better than direct supervision on this problem, and that distantly trained models can perform as well as, or better than human annotators.

pdf bib
Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers)
Ondřej Bojar | Rajen Chatterjee | Christian Federmann | Mark Fishel | Yvette Graham | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | André Martins | Christof Monz | Matteo Negri | Aurélie Névéol | Mariana Neves | Matt Post | Marco Turchi | Karin Verspoor
Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers)

pdf bib
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
Ondřej Bojar | Rajen Chatterjee | Christian Federmann | Mark Fishel | Yvette Graham | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | André Martins | Christof Monz | Matteo Negri | Aurélie Névéol | Mariana Neves | Matt Post | Marco Turchi | Karin Verspoor
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

pdf bib
Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)
Ondřej Bojar | Rajen Chatterjee | Christian Federmann | Mark Fishel | Yvette Graham | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | André Martins | Christof Monz | Matteo Negri | Aurélie Névéol | Mariana Neves | Matt Post | Marco Turchi | Karin Verspoor
Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)

2018

pdf bib
Evaluation of a Sequence Tagging Tool for Biomedical Texts
Julien Tourille | Matthieu Doutreligne | Olivier Ferret | Aurélie Névéol | Nicolas Paris | Xavier Tannier
Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis

Many applications in biomedical natural language processing rely on sequence tagging as an initial step to perform more complex analysis. To support text analysis in the biomedical domain, we introduce Yet Another SEquence Tagger (YASET), an open-source multi purpose sequence tagger that implements state-of-the-art deep learning algorithms for sequence tagging. Herein, we evaluate YASET on part-of-speech tagging and named entity recognition in a variety of text genres including articles from the biomedical literature in English and clinical narratives in French. To further characterize performance, we report distributions over 30 runs and different sizes of training datasets. YASET provides state-of-the-art performance on the CoNLL 2003 NER dataset (F1=0.87), MEDPOST corpus (F1=0.97), MERLoT corpus (F1=0.99) and NCBI disease corpus (F1=0.81). We believe that YASET is a versatile and efficient tool that can be used for sequence tagging in biomedical and clinical texts.

pdf bib
Proceedings of the Third Conference on Machine Translation: Research Papers
Ondřej Bojar | Rajen Chatterjee | Christian Federmann | Mark Fishel | Yvette Graham | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | Christof Monz | Matteo Negri | Aurélie Névéol | Mariana Neves | Matt Post | Lucia Specia | Marco Turchi | Karin Verspoor
Proceedings of the Third Conference on Machine Translation: Research Papers

bib
Proceedings of the Third Conference on Machine Translation: Shared Task Papers
Ondřej Bojar | Rajen Chatterjee | Christian Federmann | Mark Fishel | Yvette Graham | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | Christof Monz | Matteo Negri | Aurélie Névéol | Mariana Neves | Matt Post | Lucia Specia | Marco Turchi | Karin Verspoor
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

pdf bib
Findings of the WMT 2018 Biomedical Translation Shared Task : Evaluation on Medline test setsWMT 2018 Biomedical Translation Shared Task: Evaluation on Medline test sets
Mariana Neves | Antonio Jimeno Yepes | Aurélie Névéol | Cristian Grozea | Amy Siu | Madeleine Kittner | Karin Verspoor
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

Machine translation enables the automatic translation of textual documents between languages and can facilitate access to information only available in a given language for non-speakers of this language, e.g. research results presented in scientific publications. In this paper, we provide an overview of the Biomedical Translation shared task in the Workshop on Machine Translation (WMT) 2018, which specifically examined the performance of machine translation systems for biomedical texts. This year, we provided test sets of scientific publications from two sources (EDP and Medline) and for six language pairs (English with each of Chinese, French, German, Portuguese, Romanian and Spanish). We describe the development of the various test sets, the submissions that we received and the evaluations that we carried out. We obtained a total of 39 runs from six teams and some of this year’s BLEU scores were somewhat higher that last year’s, especially for teams that made use of biomedical resources or state-of-the-art MT algorithms (e.g. Transformer). Finally, our manual evaluation scored automatic translations higher than the reference translations for German and Spanish.

2017

pdf bib
Neural Architecture for Temporal Relation Extraction : A Bi-LSTM Approach for Detecting Narrative ContainersBi-LSTM Approach for Detecting Narrative Containers
Julien Tourille | Olivier Ferret | Aurélie Névéol | Xavier Tannier
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We present a neural architecture for containment relation identification between medical events and/or temporal expressions. We experiment on a corpus of de-identified clinical notes in English from the Mayo Clinic, namely the THYME corpus. Our model achieves an F-measure of 0.613 and outperforms the best result reported on this corpus to date.

pdf bib
LIMSI-COT at SemEval-2017 Task 12 : Neural Architecture for Temporal Information Extraction from Clinical NarrativesLIMSI-COT at SemEval-2017 Task 12: Neural Architecture for Temporal Information Extraction from Clinical Narratives
Julien Tourille | Olivier Ferret | Xavier Tannier | Aurélie Névéol
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

In this paper we present our participation to SemEval 2017 Task 12. We used a neural network based approach for entity and temporal relation extraction, and experimented with two domain adaptation strategies. We achieved competitive performance for both tasks.

pdf bib
Temporal information extraction from clinical text
Julien Tourille | Olivier Ferret | Xavier Tannier | Aurélie Névéol
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

In this paper, we present a method for temporal relation extraction from clinical narratives in French and in English. We experiment on two comparable corpora, the MERLOT corpus and the THYME corpus, and show that a common approach can be used for both languages.