Barry Haddow


2021

pdf bib
Beyond Sentence-Level End-to-End Speech Translation : Context Helps
Biao Zhang | Ivan Titov | Barry Haddow | Rico Sennrich
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Document-level contextual information has shown benefits to text-based machine translation, but whether and how context helps end-to-end (E2E) speech translation (ST) is still under-studied. We fill this gap through extensive experiments using a simple concatenation-based context-aware ST model, paired with adaptive feature selection on speech encodings for computational efficiency. We investigate several decoding approaches, and introduce in-model ensemble decoding which jointly performs document- and sentence-level translation using the same model. Our results on the MuST-C benchmark with Transformer demonstrate the effectiveness of context to E2E ST. Compared to sentence-level ST, context-aware ST obtains better translation quality (+0.18-2.61 BLEU), improves pronoun and homophone translation, shows better robustness to (artificial) audio segmentation errors, and reduces latency and flicker to deliver higher quality for simultaneous translation.

pdf bib
SLTEV : Comprehensive Evaluation of Spoken Language TranslationSLTEV: Comprehensive Evaluation of Spoken Language Translation
Ebrahim Ansari | Ondřej Bojar | Barry Haddow | Mohammad Mahmoudi
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

Automatic evaluation of Machine Translation (MT) quality has been investigated over several decades. Spoken Language Translation (SLT), esp. when simultaneous, needs to consider additional criteria and does not have a standard evaluation procedure and a widely used toolkit. To fill the gap, we develop SLTev, an open-source tool for assessing SLT in a comprehensive way. SLTev reports the quality, latency, and stability of an SLT candidate output based on the time-stamped transcript and reference translation into a target language. For quality, we rely on sacreBLEU which provides MT evaluation measures such as chrF or BLEU. For latency, we propose two new scoring techniques. For stability, we extend the previously defined measures with a normalized Flicker in our work. We also propose a new averaging of older measures. A preliminary version of SLTev was used in the IWSLT 2020 shared task. Moreover, a growing collection of test datasets directly accessible by SLTev are provided for system evaluation comparable across papers.

pdf bib
Proceedings of the Sixth Conference on Machine Translation
Loic Barrault | Ondrej Bojar | Fethi Bougares | Rajen Chatterjee | Marta R. Costa-jussa | Christian Federmann | Mark Fishel | Alexander Fraser | Markus Freitag | Yvette Graham | Roman Grundkiewicz | Paco Guzman | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | Tom Kocmi | Andre Martins | Makoto Morishita | Christof Monz
Proceedings of the Sixth Conference on Machine Translation

2020

pdf bib
ParaCrawl : Web-Scale Acquisition of Parallel CorporaParaCrawl: Web-Scale Acquisition of Parallel Corpora
Marta Bañón | Pinzhen Chen | Barry Haddow | Kenneth Heafield | Hieu Hoang | Miquel Esplà-Gomis | Mikel L. Forcada | Amir Kamran | Faheem Kirefu | Philipp Koehn | Sergio Ortiz Rojas | Leopoldo Pla Sempere | Gema Ramírez-Sánchez | Elsa Sarrías | Marek Strelec | Brian Thompson | William Waites | Dion Wiggins | Jaume Zaragoza
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We report on methods to create the largest publicly available parallel corpora by crawling the web, using open source software. We empirically compare alternative methods and publish benchmark data sets for sentence alignment and sentence pair filtering. We also describe the parallel corpora released and evaluate their quality and their usefulness to create machine translation systems.

pdf bib
Adaptive Feature Selection for End-to-End Speech Translation
Biao Zhang | Ivan Titov | Barry Haddow | Rico Sennrich
Findings of the Association for Computational Linguistics: EMNLP 2020

Information in speech signals is not evenly distributed, making it an additional challenge for end-to-end (E2E) speech translation (ST) to learn to focus on informative features. In this paper, we propose adaptive feature selection (AFS) for encoder-decoder based E2E ST. We first pre-train an ASR encoder and apply AFS to dynamically estimate the importance of each encoded speech feature to ASR. A ST encoder, stacked on top of the ASR encoder, then receives the filtered features from the (frozen) ASR encoder. We take L0DROP (Zhang et al., 2020) as the backbone for AFS, and adapt it to sparsify speech features with respect to both temporal and feature dimensions. Results on LibriSpeech EnFr and MuST-C benchmarks show that AFS facilitates learning of ST by pruning out ~84 % temporal features, yielding an average translation gain of ~1.3-1.6 BLEU and a decoding speedup of ~1.4x. In particular, AFS reduces the performance gap compared to the cascade baseline, and outperforms it on LibriSpeech En-Fr with a BLEU score of 18.56 (without data augmentation).

pdf bib
Proceedings of the Fifth Conference on Machine Translation
Loïc Barrault | Ondřej Bojar | Fethi Bougares | Rajen Chatterjee | Marta R. Costa-jussà | Christian Federmann | Mark Fishel | Alexander Fraser | Yvette Graham | Paco Guzman | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | André Martins | Makoto Morishita | Christof Monz | Masaaki Nagata | Toshiaki Nakazawa | Matteo Negri
Proceedings of the Fifth Conference on Machine Translation

pdf bib
Removing European Language Barriers with Innovative Machine Translation TechnologyEuropean Language Barriers with Innovative Machine Translation Technology
Dario Franceschini | Chiara Canton | Ivan Simonini | Armin Schweinfurth | Adelheid Glott | Sebastian Stüker | Thai-Son Nguyen | Felix Schneider | Thanh-Le Ha | Alex Waibel | Barry Haddow | Philip Williams | Rico Sennrich | Ondřej Bojar | Sangeet Sagar | Dominik Macháček | Otakar Smrž
Proceedings of the 1st International Workshop on Language Technology Platforms

This paper presents our progress towards deploying a versatile communication platform in the task of highly multilingual live speech translation for conferences and remote meetings live subtitling. The platform has been designed with a focus on very low latency and high flexibility while allowing research prototypes of speech and text processing tools to be easily connected, regardless of where they physically run. We outline our architecture solution and also briefly compare it with the ELG platform. Technical details are provided on the most important components and we summarize the test deployment events we ran so far.

2019

pdf bib
Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers)
Ondřej Bojar | Rajen Chatterjee | Christian Federmann | Mark Fishel | Yvette Graham | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | André Martins | Christof Monz | Matteo Negri | Aurélie Névéol | Mariana Neves | Matt Post | Marco Turchi | Karin Verspoor
Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers)

pdf bib
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
Ondřej Bojar | Rajen Chatterjee | Christian Federmann | Mark Fishel | Yvette Graham | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | André Martins | Christof Monz | Matteo Negri | Aurélie Névéol | Mariana Neves | Matt Post | Marco Turchi | Karin Verspoor
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

pdf bib
Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)
Ondřej Bojar | Rajen Chatterjee | Christian Federmann | Mark Fishel | Yvette Graham | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | André Martins | Christof Monz | Matteo Negri | Aurélie Névéol | Mariana Neves | Matt Post | Marco Turchi | Karin Verspoor
Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)

pdf bib
Proceedings of Machine Translation Summit XVII: Research Track
Mikel Forcada | Andy Way | Barry Haddow | Rico Sennrich
Proceedings of Machine Translation Summit XVII: Research Track

2018

pdf bib
Proceedings of the Third Conference on Machine Translation: Research Papers
Ondřej Bojar | Rajen Chatterjee | Christian Federmann | Mark Fishel | Yvette Graham | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | Christof Monz | Matteo Negri | Aurélie Névéol | Mariana Neves | Matt Post | Lucia Specia | Marco Turchi | Karin Verspoor
Proceedings of the Third Conference on Machine Translation: Research Papers

pdf bib
Exploring gap filling as a cheaper alternative to reading comprehension questionnaires when evaluating machine translation for gisting
Mikel L. Forcada | Carolina Scarton | Lucia Specia | Barry Haddow | Alexandra Birch
Proceedings of the Third Conference on Machine Translation: Research Papers

A popular application of machine translation (MT) is gisting : MT is consumed as is to make sense of text in a foreign language. Evaluation of the usefulness of MT for gisting is surprisingly uncommon. The classical method uses reading comprehension questionnaires (RCQ), in which informants are asked to answer professionally-written questions in their language about a foreign text that has been machine-translated into their language. Recently, gap-filling (GF), a form of cloze testing, has been proposed as a cheaper alternative to RCQ. In GF, certain words are removed from reference translations and readers are asked to fill the gaps left using the machine-translated text as a hint. This paper reports, for the first time, a comparative evaluation, using both RCQ and GF, of translations from multiple MT systems for the same foreign texts, and a systematic study on the effect of variables such as gap density, gap-selection strategies, and document context in GF. The main findings of the study are : (a) both RCQ and GF clearly identify MT to be useful ; (b) global RCQ and GF rankings for the MT systems are mostly in agreement ; (c) GF scores vary very widely across informants, making comparisons among MT systems hard, and (d) unlike RCQ, which is framed around documents, GF evaluation can be framed at the sentence level. These findings support the use of GF as a cheaper alternative to RCQ.gisting: MT is consumed as is to make sense of text in a foreign language. Evaluation of the usefulness of MT for gisting is surprisingly uncommon. The classical method uses reading comprehension questionnaires (RCQ), in which informants are asked to answer professionally-written questions in their language about a foreign text that has been machine-translated into their language. Recently, gap-filling (GF), a form of cloze testing, has been proposed as a cheaper alternative to RCQ. In GF, certain words are removed from reference translations and readers are asked to fill the gaps left using the machine-translated text as a hint. This paper reports, for the first time, a comparative evaluation, using both RCQ and GF, of translations from multiple MT systems for the same foreign texts, and a systematic study on the effect of variables such as gap density, gap-selection strategies, and document context in GF. The main findings of the study are: (a) both RCQ and GF clearly identify MT to be useful; (b) global RCQ and GF rankings for the MT systems are mostly in agreement; (c) GF scores vary very widely across informants, making comparisons among MT systems hard, and (d) unlike RCQ, which is framed around documents, GF evaluation can be framed at the sentence level. These findings support the use of GF as a cheaper alternative to RCQ.

bib
Proceedings of the Third Conference on Machine Translation: Shared Task Papers
Ondřej Bojar | Rajen Chatterjee | Christian Federmann | Mark Fishel | Yvette Graham | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | Christof Monz | Matteo Negri | Aurélie Névéol | Mariana Neves | Matt Post | Lucia Specia | Marco Turchi | Karin Verspoor
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

pdf bib
The University of Edinburgh’s Submissions to the WMT18 News Translation TaskUniversity of Edinburgh’s Submissions to the WMT18 News Translation Task
Barry Haddow | Nikolay Bogoychev | Denis Emelin | Ulrich Germann | Roman Grundkiewicz | Kenneth Heafield | Antonio Valerio Miceli Barone | Rico Sennrich
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

The University of Edinburgh made submissions to all 14 language pairs in the news translation task, with strong performances in most pairs. We introduce new RNN-variant, mixed RNN / Transformer ensembles, data selection and weighting, and extensions to back-translation.

pdf bib
Samsung and University of Edinburgh’s System for the IWSLT 2018 Low Resource MT TaskSamsung and University of Edinburgh’s System for the IWSLT 2018 Low Resource MT Task
Philip Williams | Marcin Chochowski | Pawel Przybysz | Rico Sennrich | Barry Haddow | Alexandra Birch
Proceedings of the 15th International Conference on Spoken Language Translation

This paper describes the joint submission to the IWSLT 2018 Low Resource MT task by Samsung R&D Institute, Poland, and the University of Edinburgh. We focused on supplementing the very limited in-domain Basque-English training data with out-of-domain data, with synthetic data, and with data for other language pairs. We also experimented with a variety of model architectures and features, which included the development of extensions to the Nematus toolkit. Our submission was ultimately produced by a system combination in which we reranked translations from our strongest individual system using multiple weaker systems.

2017

pdf bib
Proceedings of the Second Conference on Machine Translation
Ondřej Bojar | Christian Buck | Rajen Chatterjee | Christian Federmann | Yvette Graham | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | Julia Kreutzer
Proceedings of the Second Conference on Machine Translation

pdf bib
The Samsung and University of Edinburgh’s submission to IWSLT17Samsung and University of Edinburgh’s submission to IWSLT17
Pawel Przybysz | Marcin Chochowski | Rico Sennrich | Barry Haddow | Alexandra Birch
Proceedings of the 14th International Conference on Spoken Language Translation

This paper describes the joint submission of Samsung Research and Development, Warsaw, Poland and the University of Edinburgh team to the IWSLT MT task for TED talks. We took part in two translation directions, en-de and de-en. We also participated in the en-de and de-en lectures SLT task. The models have been trained with an attentional encoder-decoder model using the BiDeep model in Nematus. We filtered the training data to reduce the problem of noisy data, and we use back-translated monolingual data for domain-adaptation. We demonstrate the effectiveness of the different techniques that we applied via ablation studies. Our submission system outperforms our baseline, and last year’s University of Edinburgh submission to IWSLT, by more than 5 BLEU.

pdf bib
Regularization techniques for fine-tuning in neural machine translation
Antonio Valerio Miceli Barone | Barry Haddow | Ulrich Germann | Rico Sennrich
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We investigate techniques for supervised domain adaptation for neural machine translation where an existing model trained on a large out-of-domain dataset is adapted to a small in-domain dataset. In this scenario, overfitting is a major challenge. We investigate a number of techniques to reduce overfitting and improve transfer learning, including regularization techniques such as dropout and L2-regularization towards an out-of-domain prior. In addition, we introduce tuneout, a novel regularization technique inspired by dropout. We apply these techniques, alone and in combination, to neural machine translation, obtaining improvements on IWSLT datasets for EnglishGerman and EnglishRussian. We also investigate the amounts of in-domain training data needed for domain adaptation in NMT, and find a logarithmic relationship between the amount of training data and gain in BLEU score.

pdf bib
Practical Neural Machine Translation
Rico Sennrich | Barry Haddow
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts

Neural Machine Translation (NMT) has achieved new breakthroughs in machine translation in recent years. It has dominated recent shared translation tasks in machine translation research, and is also being quickly adopted in industry. The technical differences between NMT and the previously dominant phrase-based statistical approach require that practictioners learn new best practices for building MT systems, ranging from different hardware requirements, new techniques for handling rare words and monolingual data, to new opportunities in continued learning and domain adaptation. This tutorial is aimed at researchers and users of machine translation interested in working with NMT. The tutorial will cover a basic theoretical introduction to NMT, discuss the components of state-of-the-art systems, and provide practical advice for building NMT systems.