Denis Emelin


2021

pdf bib
Moral Stories : Situated Reasoning about Norms, Intents, Actions, and their Consequences
Denis Emelin | Ronan Le Bras | Jena D. Hwang | Maxwell Forbes | Yejin Choi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In social settings, much of human behavior is governed by unspoken rules of conduct rooted in societal norms. For artificial systems to be fully integrated into social environments, adherence to such norms is a central prerequisite. To investigate whether language generation models can serve as behavioral priors for systems deployed in social settings, we evaluate their ability to generate action descriptions that achieve predefined goals under normative constraints. Moreover, we examine if models can anticipate likely consequences of actions that either observe or violate known norms, or explain why certain actions are preferable by generating relevant norm hypotheses. For this purpose, we introduce Moral Stories, a crowd-sourced dataset of structured, branching narratives for the study of grounded, goal-oriented social reasoning. Finally, we propose decoding strategies that combine multiple expert models to significantly improve the quality of generated actions, consequences, and norms compared to strong baselines.

pdf bib
Wino-X : Multilingual Winograd Schemas for Commonsense Reasoning and Coreference ResolutionX: Multilingual Winograd Schemas for Commonsense Reasoning and Coreference Resolution
Denis Emelin | Rico Sennrich
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Winograd schemas are a well-established tool for evaluating coreference resolution (CoR) and commonsense reasoning (CSR) capabilities of computational models. So far, schemas remained largely confined to English, limiting their utility in multilingual settings. This work presents Wino-X, a parallel dataset of German, French, and Russian schemas, aligned with their English counterparts. We use this resource to investigate whether neural machine translation (NMT) models can perform CoR that requires commonsense knowledge and whether multilingual language models (MLLMs) are capable of CSR across multiple languages. Our findings show Wino-X to be exceptionally challenging for NMT systems that are prone to undesirable biases and unable to detect disambiguating information. We quantify biases using established statistical methods and define ways to address both of these issues. We furthermore present evidence of active cross-lingual knowledge transfer in MLLMs, whereby fine-tuning models on English schemas yields CSR improvements in other languages.

2020

pdf bib
Detecting Word Sense Disambiguation Biases in Machine Translation for Model-Agnostic Adversarial Attacks
Denis Emelin | Ivan Titov | Rico Sennrich
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Word sense disambiguation is a well-known source of translation errors in NMT. We posit that some of the incorrect disambiguation choices are due to models’ over-reliance on dataset artifacts found in training data, specifically superficial word co-occurrences, rather than a deeper understanding of the source text. We introduce a method for the prediction of disambiguation errors based on statistical data properties, demonstrating its effectiveness across several domains and model types. Moreover, we develop a simple adversarial attack strategy that minimally perturbs sentences in order to elicit disambiguation errors to further probe the robustness of translation models. Our findings indicate that disambiguation robustness varies substantially between domains and that different models trained on the same data are vulnerable to different attacks.

2019

pdf bib
Widening the Representation Bottleneck in Neural Machine Translation with Lexical Shortcuts
Denis Emelin | Ivan Titov | Rico Sennrich
Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers)

The transformer is a state-of-the-art neural translation model that uses attention to iteratively refine lexical representations with information drawn from the surrounding context. Lexical features are fed into the first layer and propagated through a deep network of hidden layers. We argue that the need to represent and propagate lexical features in each layer limits the model’s capacity for learning and representing other information relevant to the task. To alleviate this bottleneck, we introduce gated shortcut connections between the embedding layer and each subsequent layer within the encoder and decoder. This enables the model to access relevant lexical content dynamically, without expending limited resources on storing it within intermediate states. We show that the proposed modification yields consistent improvements over a baseline transformer on standard WMT translation tasks in 5 translation directions (0.9 BLEU on average) and reduces the amount of lexical information passed along the hidden layers. We furthermore evaluate different ways to integrate lexical connections into the transformer architecture and present ablation experiments exploring the effect of proposed shortcuts on model behavior.

2018

pdf bib
The University of Edinburgh’s Submissions to the WMT18 News Translation TaskUniversity of Edinburgh’s Submissions to the WMT18 News Translation Task
Barry Haddow | Nikolay Bogoychev | Denis Emelin | Ulrich Germann | Roman Grundkiewicz | Kenneth Heafield | Antonio Valerio Miceli Barone | Rico Sennrich
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

The University of Edinburgh made submissions to all 14 language pairs in the news translation task, with strong performances in most pairs. We introduce new RNN-variant, mixed RNN / Transformer ensembles, data selection and weighting, and extensions to back-translation.