Linguistic probing of pretrained Transformer-based language models (LMs) revealed that they encode a range of syntactic and semantic properties of a language. However, they are still prone to fall back on superficial cues and simple heuristics to solve downstream tasks, rather than leverage deeper linguistic information. In this paper, we target a specific facet of linguistic knowledge, the interplay between verb meaning and argument structure. We investigate whether injecting explicit information on verbs’ semantic-syntactic behaviour improves the performance of pretrained LMs in event extraction tasks, where accurate verb processing is paramount. Concretely, we impart the verb knowledge from curated lexical resources into dedicated adapter modules (verb adapters), allowing it to complement, in downstream tasks, the language knowledge obtained during LM-pretraining. We first demonstrate that injecting verb knowledge leads to performance gains in English event extraction. We then explore the utility of verb adapters for event extraction in other languages : we investigate 1) zero-shot language transfer with multilingual Transformers and 2) transfer via (noisy automatic) translation of English verb-based lexical knowledge. Our results show that the benefits of verb knowledge injection indeed extend to other languages, even when relying on noisily translated lexical knowledge.
Unsupervised pretraining models have been shown to facilitate a wide range of downstream NLP applications. These models, however, retain some of the limitations of traditional static word embeddings. In particular, they encode only the distributional knowledge available in raw text corpora, incorporated through language modeling objectives. In this work, we complement such distributional knowledge with external lexical knowledge, that is, we integrate the discrete knowledge on word-level semantic similarity into pretraining. To this end, we generalize the standard BERT model to a multi-task learning setting where we couple BERT’s masked language modeling and next sentence prediction objectives with an auxiliary task of binary word relation classification. Our experiments suggest that our Lexically Informed BERT (LIBERT), specialized for the word-level semantic similarity, yields better performance than the lexically blind vanilla BERT on several language understanding tasks. Concretely, LIBERT outperforms BERT in 9 out of 10 tasks of the GLUE benchmark and is on a par with BERT in the remaining one. Moreover, we show consistent gains on 3 benchmarks for lexical simplification, a task where knowledge about word-level semantic similarity is paramount, as well as large gains on lexical reasoning probes.
Typological knowledge bases (KBs) such as WALS (Dryer and Haspelmath, 2013) contain information about linguistic properties of the world’s languages. They have been shown to be useful for downstream applications, including cross-lingual transfer learning and linguistic probing. A major drawback hampering broader adoption of typological KBs is that they are sparsely populated, in the sense that most languages only have annotations for some features, and skewed, in that few features have wide coverage. As typological features often correlate with one another, it is possible to predict them and thus automatically populate typological KBs, which is also the focus of this shared task. Overall, the task attracted 8 submissions from 5 teams, out of which the most successful methods make use of such feature correlations. However, our error analysis reveals that even the strongest submitted systems struggle with predicting feature values for languages where few features are known.
Semantic specialization integrates structured linguistic knowledge from external resources (such as lexical relations in WordNet) into pretrained distributional vectors in the form of constraints. However, this technique can not be leveraged in many languages, because their structured external resources are typically incomplete or non-existent. To bridge this gap, we propose a novel method that transfers specialization from a resource-rich source language (English) to virtually any target language. Our specialization transfer comprises two crucial steps : 1) Inducing noisy constraints in the target language through automatic word translation ; and 2) Filtering the noisy constraints via a state-of-the-art relation prediction model trained on the source language constraints. This allows us to specialize any set of distributional vectors in the target language with the refined constraints. We prove the effectiveness of our method through intrinsic word similarity evaluation in 8 languages, and with 3 downstream tasks in 5 languages : lexical simplification, dialog state tracking, and semantic textual similarity. The gains over the previous state-of-art specialization methods are substantial and consistent across languages. Our results also suggest that the transfer method is effective even for lexically distant source-target language pairs. Finally, as a by-product, our method produces lists of WordNet-style lexical relations in resource-poor languages.
Can we construct a neural language model which is inductively biased towards learning human language? Motivated by this question, we aim at constructing an informative prior for held-out languages on the task of character-level, open-vocabulary language modelling. We obtain this prior as the posterior over network weights conditioned on the data from a sample of training languages, which is approximated through Laplace’s method. Based on a large and diverse sample of languages, the use of our prior outperforms baseline models with an uninformative prior in both zero-shot and few-shot settings, showing that the prior is imbued with universal linguistic knowledge. Moreover, we harness broad language-specific information available for most languages of the world, i.e., features from typological databases, as distant supervision for held-out languages. We explore several language modelling conditioning techniques, including concatenation and meta-networks for parameter generation. They appear beneficial in the few-shot setting, but ineffective in the zero-shot setting. Since the paucity of even plain digital text affects the majority of the world’s languages, we hope that these insights will broaden the scope of applications for language technology.
Distributional word vectors have become an indispensable component of most state-of-art NLP models. As a major artefact of the underlying distributional hypothesis, distributional word vector spaces conflate various paradigmatic and syntagmatic lexico-semantic relations. For example, relations such as synonymy/similarity (e.g., car-automobile) or lexical entailment (e.g., car-vehicle) often cannot be distinguished from antonymy (e.g., black-white), meronymy (e.g., car-wheel) or broader thematic relatedness (e.g., car-driver) based on the distances in the distributional vector space. This inherent property of distributional spaces often harms performance in downstream applications, since different lexico-semantic relations support different classes of NLP applications. For instance, Semantic Similarity provides guidance for Paraphrasing, Dialogue State Tracking, and Text Simplification, Lexical Entailment supports Natural Language Inference and Taxonomy Induction, whereas broader thematic relatedness yields gains for Named Entity Recognition, Parsing, and Text Classification and Retrieval.\n\nA plethora of methods have been proposed to emphasize specific lexico-semantic relations in a reshaped (i.e., specialized) vector space. A common solution is to move beyond purely unsupervised word representation learning and include external lexico-semantic knowledge, in a process commonly referred to as semantic specialization. In this tutorial, we provide a thorough overview of specialization methods, covering: 1) joint specialization methods, which augment distributional learning objectives with external linguistic constraints, 2) post-processing retrofitting models, which fine-tune pre-trained distributional vectors to better reflect external linguistic constraints, and 3) the most recently proposed post-specialization methods that generalize the perturbations of the post-processing methods to the whole distributional space. In addition to providing a comprehensive overview of specialization methods, we will introduce the most recent developments, such as (among others): handling asymmetric relations (e.g., hypernymy-hyponymy) in Euclidean and hyperbolic spaces by accounting for vector magnitude as well as for vector distance; cross-lingual transfer of semantic specialization for languages without external lexico-semantic resources; downstream effects of specializing distributional vector spaces; injecting external knowledge into unsupervised pretraining architectures such as ELMo or BERT.
Semantic specialization methods fine-tune distributional word vectors using lexical knowledge from external resources (e.g. WordNet) to accentuate a particular relation between words. However, such post-processing methods suffer from limited coverage as they affect only vectors of words seen in the external resources. We present the first post-processing method that specializes vectors of all vocabulary words including those unseen in the resources for the asymmetric relation of lexical entailment (LE) (i.e., hyponymy-hypernymy relation). Leveraging a partially LE-specialized distributional space, our POSTLE (i.e., post-specialization for LE) model learns an explicit global specialization function, allowing for specialization of vectors of unseen words, as well as word vectors from other languages via cross-lingual transfer. We capture the function as a deep feed-forward neural network : its objective re-scales vector norms to reflect the concept hierarchy while simultaneously attracting hyponymy-hypernymy pairs to better reflect semantic similarity. An extended model variant augments the basic architecture with an adversarial discriminator. We demonstrate the usefulness and versatility of POSTLE models with different input distributional spaces in different scenarios (monolingual LE and zero-shot cross-lingual LE transfer) and tasks (binary and graded LE). We report consistent gains over state-of-the-art LE-specialization methods, and successfully LE-specialize word vectors for languages without any external lexical knowledge.
Semantic specialization is a process of fine-tuning pre-trained distributional word vectors using external lexical knowledge (e.g., WordNet) to accentuate a particular semantic relation in the specialized vector space. While post-processing specialization methods are applicable to arbitrary distributional vectors, they are limited to updating only the vectors of words occurring in external lexicons (i.e., seen words), leaving the vectors of all other words unchanged. We propose a novel approach to specializing the full distributional vocabulary. Our adversarial post-specialization method propagates the external lexical knowledge to the full distributional space. We exploit words seen in the resources as training examples for learning a global specialization function. This function is learned by combining a standard L2-distance loss with a adversarial loss : the adversarial component produces more realistic output vectors. We show the effectiveness and robustness of the proposed method across three languages and on three tasks : word similarity, dialog state tracking, and lexical simplification. We report consistent improvements over distributional word vectors and vectors specialized by other state-of-the-art specialization frameworks. Finally, we also propose a cross-lingual transfer method for zero-shot specialization which successfully specializes a full target distributional space without any lexical knowledge in the target language and without any bilingual data.
Causal relations play a key role in information extraction and reasoning. Most of the times, their expression is ambiguous or implicit, i.e. without signals in the text. This makes their identification challenging. We aim to improve their identification by implementing a Feedforward Neural Network with a novel set of features for this task. In particular, these are based on the position of event mentions and the semantics of events and participants. The resulting classifier outperforms strong baselines on two datasets (the Penn Discourse Treebank and the CSTNews corpus) annotated with different schemes and containing examples in two languages, English and Portuguese. This result demonstrates the importance of events for identifying discourse relations.
Distributed representations of sentences have been developed recently to represent their meaning as real-valued vectors. However, it is not clear how much information such representations retain about the polarity of sentences. To study this question, we decode sentiment from unsupervised sentence representations learned with different architectures (sensitive to the order of words, the order of sentences, or none) in 9 typologically diverse languages. Sentiment results from the (recursive) composition of lexical items and grammatical strategies such as negation and concession. The results are manifold : we show that there is no ‘one-size-fits-all’ representation architecture outperforming the others across the board. Rather, the top-ranking architectures depend on the language at hand. Moreover, we find that in several cases the additive composition model based on skip-gram word vectors may surpass supervised state-of-art architectures such as bi-directional LSTMs. Finally, we provide a possible explanation of the observed variation based on the type of negative constructions in each language.