Eric Nyberg


2019

pdf bib
Bend but Do n’t Break? Multi-Challenge Stress Test for QA ModelsQA Models
Hemant Pugaliya | James Route | Kaixin Ma | Yixuan Geng | Eric Nyberg
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

The field of question answering (QA) has seen rapid growth in new tasks and modeling approaches in recent years. Large scale datasets and focus on challenging linguistic phenomena have driven development in neural models, some of which have achieved parity with human performance in limited cases. However, an examination of state-of-the-art model output reveals that a gap remains in reasoning ability compared to a human, and performance tends to degrade when models are exposed to less-constrained tasks. We are interested in more clearly defining the strengths and limitations of leading models across diverse QA challenges, intending to help future researchers with identifying pathways to generalizable performance. We conduct extensive qualitative and quantitative analyses on the results of four models across four datasets and relate common errors to model capabilities. We also illustrate limitations in the datasets we examine and discuss a way forward for achieving generalizable models and datasets that broadly test QA capabilities.

pdf bib
Towards Generalizable Neuro-Symbolic Systems for Commonsense Question Answering
Kaixin Ma | Jonathan Francis | Quanyang Lu | Eric Nyberg | Alessandro Oltramari
Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing

Non-extractive commonsense QA remains a challenging AI task, as it requires systems to reason about, synthesize, and gather disparate pieces of information, in order to generate responses to queries. Recent approaches on such tasks show increased performance, only when models are either pre-trained with additional information or when domain-specific heuristics are used, without any special consideration regarding the knowledge resource type. In this paper, we perform a survey of recent commonsense QA methods and we provide a systematic analysis of popular knowledge resources and knowledge-integration methods, across benchmarks from multiple commonsense datasets. Our results and analysis show that attention-based injection seems to be a preferable choice for knowledge integration and that the degree of domain overlap, between knowledge bases and datasets, plays a crucial role in determining model success.

pdf bib
Dr. Quad at MEDIQA 2019 : Towards Textual Inference and Question Entailment using contextualized representationsDr.Quad at MEDIQA 2019: Towards Textual Inference and Question Entailment using contextualized representations
Vinayshekhar Bannihatti Kumar | Ashwin Srinivasan | Aditi Chaudhary | James Route | Teruko Mitamura | Eric Nyberg
Proceedings of the 18th BioNLP Workshop and Shared Task

This paper presents the submissions by TeamDr. Quad to the ACL-BioNLP 2019 shared task on Textual Inference and Question Entailment in the Medical Domain. Our system is based on the prior work Liu et al. (2019) which uses a multi-task objective function for textual entailment. In this work, we explore different strategies for generalizing state-of-the-art language understanding models to the specialized medical domain. Our results on the shared task demonstrate that incorporating domain knowledge through data augmentation is a powerful strategy for addressing challenges posed specialized domains such as medicine.

pdf bib
Sieg at MEDIQA 2019 : Multi-task Neural Ensemble for Biomedical Inference and EntailmentMEDIQA 2019: Multi-task Neural Ensemble for Biomedical Inference and Entailment
Sai Abishek Bhaskar | Rashi Rungta | James Route | Eric Nyberg | Teruko Mitamura
Proceedings of the 18th BioNLP Workshop and Shared Task

This paper presents a multi-task learning approach to natural language inference (NLI) and question entailment (RQE) in the biomedical domain. Recognizing textual inference relations and question similarity can address the issue of answering new consumer health questions by mapping them to Frequently Asked Questions on reputed websites like the NIH. We show that leveraging information from parallel tasks across domains along with medical knowledge integration allows our model to learn better biomedical feature representations. Our final models for the NLI and RQE tasks achieve the 4th and 2nd rank on the shared-task leaderboard respectively.

pdf bib
Storyboarding of Recipes : Grounded Contextual Generation
Khyathi Chandu | Eric Nyberg | Alan W Black
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Information need of humans is essentially multimodal in nature, enabling maximum exploitation of situated context. We introduce a dataset for sequential procedural (how-to) text generation from images in cooking domain. The dataset consists of 16,441 cooking recipes with 160,479 photos associated with different steps. We setup a baseline motivated by the best performing model in terms of human evaluation for the Visual Story Telling (ViST) task. In addition, we introduce two models to incorporate high level structure learnt by a Finite State Machine (FSM) in neural sequential generation process by : (1) Scaffolding Structure in Decoder (SSiD) (2) Scaffolding Structure in Loss (SSiL). Our best performing model (SSiL) achieves a METEOR score of 0.31, which is an improvement of 0.6 over the baseline model. We also conducted human evaluation of the generated grounded recipes, which reveal that 61 % found that our proposed (SSiL) model is better than the baseline model in terms of overall recipes. We also discuss analysis of the output highlighting key important NLP issues for prospective directions.

2018

pdf bib
Comparative Analysis of Neural QA models on SQuADQA models on SQuAD
Soumya Wadhwa | Khyathi Chandu | Eric Nyberg
Proceedings of the Workshop on Machine Reading for Question Answering

The task of Question Answering has gained prominence in the past few decades for testing the ability of machines to understand natural language. Large datasets for Machine Reading have led to the development of neural models that cater to deeper language understanding compared to information retrieval tasks. Different components in these neural architectures are intended to tackle different challenges. As a first step towards achieving generalization across multiple domains, we attempt to understand and compare the peculiarities of existing end-to-end neural models on the Stanford Question Answering Dataset (SQuAD) by performing quantitative as well as qualitative analysis of the results attained by each of them. We observed that prediction errors reflect certain model-specific biases, which we further discuss in this paper.

pdf bib
Code-Mixed Question Answering Challenge : Crowd-sourcing Data and Techniques
Khyathi Chandu | Ekaterina Loginova | Vishal Gupta | Josef van Genabith | Günter Neumann | Manoj Chinnakotla | Eric Nyberg | Alan W. Black
Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching

Code-Mixing (CM) is the phenomenon of alternating between two or more languages which is prevalent in bi- and multi-lingual communities. Most NLP applications today are still designed with the assumption of a single interaction language and are most likely to break given a CM utterance with multiple languages mixed at a morphological, phrase or sentence level. For example, popular commercial search engines do not yet fully understand the intents expressed in CM queries. As a first step towards fostering research which supports CM in NLP applications, we systematically crowd-sourced and curated an evaluation dataset for factoid question answering in three CM languages-Hinglish (Hindi+English), Tenglish (Telugu+English) and Tamlish (Tamil+English) which belong to two language families (Indo-Aryan and Dravidian). We share the details of our data collection process, techniques which were used to avoid inducing lexical bias amongst the crowd workers and other CM specific linguistic properties of the dataset. Our final dataset, which is available freely for research purposes, has 1,694 Hinglish, 2,848 Tamlish and 1,391 Tenglish factoid questions and their answers. We discuss the techniques used by the participants for the first edition of this ongoing challenge.

2017

pdf bib
Tackling Biomedical Text Summarization : OAQA at BioASQ 5BOAQA at BioASQ 5B
Khyathi Chandu | Aakanksha Naik | Aditya Chandrasekar | Zi Yang | Niloy Gupta | Eric Nyberg
BioNLP 2017

In this paper, we describe our participation in phase B of task 5b of the fifth edition of the annual BioASQ challenge, which includes answering factoid, list, yes-no and summary questions from biomedical data. We describe our techniques with an emphasis on ideal answer generation, where the goal is to produce a relevant, precise, non-redundant, query-oriented summary from multiple relevant documents. We make use of extractive summarization techniques to address this task and experiment with different biomedical ontologies and various algorithms including agglomerative clustering, Maximum Marginal Relevance (MMR) and sentence compression. We propose a novel word embedding based tf-idf similarity metric and a soft positional constraint which improve our system performance. We evaluate our techniques on test batch 4 from the fourth edition of the challenge. Our best system achieves a ROUGE-2 score of 0.6534 and ROUGE-SU4 score of 0.6536.

pdf bib
Shakespearizing Modern Language Using Copy-Enriched Sequence to Sequence Models
Harsh Jhamtani | Varun Gangal | Eduard Hovy | Eric Nyberg
Proceedings of the Workshop on Stylistic Variation

Variations in writing styles are commonly used to adapt the content to a specific context, audience, or purpose. However, applying stylistic variations is still by and large a manual process, and there have been little efforts towards automating it. In this paper we explore automated methods to transform text from modern English to Shakespearean English using an end to end trainable neural model with pointers to enable copy action. To tackle limited amount of parallel data, we pre-train embeddings of words by leveraging external dictionaries mapping Shakespearean words to modern English words as well as additional text. Our methods are able to get a BLEU score of 31 +, an improvement of 6 points above the strongest baseline. We publicly release our code to foster further research in this area.

pdf bib
How Would You Say It? Eliciting Lexically Diverse Dialogue for Supervised Semantic Parsing
Abhilasha Ravichander | Thomas Manzini | Matthias Grabmair | Graham Neubig | Jonathan Francis | Eric Nyberg
Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue

Building dialogue interfaces for real-world scenarios often entails training semantic parsers starting from zero examples. How can we build datasets that better capture the variety of ways users might phrase their queries, and what queries are actually realistic? Wang et al. (2015) proposed a method to build semantic parsing datasets by generating canonical utterances using a grammar and having crowdworkers paraphrase them into natural wording. A limitation of this approach is that it induces bias towards using similar language as the canonical utterances. In this work, we present a methodology that elicits meaningful and lexically diverse queries from users for semantic parsing tasks. Starting from a seed lexicon and a generative grammar, we pair logical forms with mixed text-image representations and ask crowdworkers to paraphrase and confirm the plausibility of the queries that they generated. We use this method to build a semantic parsing dataset from scratch for a dialog agent in a smart-home simulation. We find evidence that this dataset, which we have named SmartHome, is demonstrably more lexically diverse and difficult to parse than existing domain-specific semantic parsing datasets.

pdf bib
Structural Embedding of Syntactic Trees for Machine Comprehension
Rui Liu | Junjie Hu | Wei Wei | Zi Yang | Eric Nyberg
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Deep neural networks for machine comprehension typically utilizes only word or character embeddings without explicitly taking advantage of structured linguistic information such as constituency trees and dependency trees. In this paper, we propose structural embedding of syntactic trees (SEST), an algorithm framework to utilize structured information and encode them into vector representations that can boost the performance of algorithms for the machine comprehension. We evaluate our approach using a state-of-the-art neural attention model on the SQuAD dataset. Experimental results demonstrate that our model can accurately identify the syntactic boundaries of the sentences and extract answers that are syntactically coherent over the baseline methods.

pdf bib
Steering Output Style and Topic in Neural Response Generation
Di Wang | Nebojsa Jojic | Chris Brockett | Eric Nyberg
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We propose simple and flexible training and decoding methods for influencing output style and topic in neural encoder-decoder based language generation. This capability is desirable in a variety of applications, including conversational systems, where successful agents need to produce language in a specific style and generate responses steered by a human puppeteer or external knowledge. We decompose the neural generation process into empirically easier sub-problems : a faithfulness model and a decoding method based on selective-sampling. We also describe training and sampling algorithms that bias the generation process with a specific language style restriction, or a topic restriction. Human evaluation results show that our proposed methods are able to to restrict style and topic without degrading output quality in conversational tasks.

pdf bib
Charmanteau : Character Embedding Models For Portmanteau CreationCharmanteau: Character Embedding Models For Portmanteau Creation
Varun Gangal | Harsh Jhamtani | Graham Neubig | Eduard Hovy | Eric Nyberg
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Portmanteaus are a word formation phenomenon where two words combine into a new word. We propose character-level neural sequence-to-sequence (S2S) methods for the task of portmanteau generation that are end-to-end-trainable, language independent, and do not explicitly use additional phonetic information. We propose a noisy-channel-style model, which allows for the incorporation of unsupervised word lists, improving performance over a standard source-to-target model. This model is made possible by an exhaustive candidate generation strategy specifically enabled by the features of the portmanteau task. Experiments find our approach superior to a state-of-the-art FST-based baseline with respect to ground truth accuracy and human evaluation.