Guodong Zhou


2021

pdf bib
More than Text : Multi-modal Chinese Word SegmentationChinese Word Segmentation
Dong Zhang | Zheng Hu | Shoushan Li | Hanqian Wu | Qiaoming Zhu | Guodong Zhou
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Chinese word segmentation (CWS) is undoubtedly an important basic task in natural language processing. Previous works only focus on the textual modality, but there are often audio and video utterances (such as news broadcast and face-to-face dialogues), where textual, acoustic and visual modalities normally exist. To this end, we attempt to combine the multi-modality (mainly the converted text and actual voice information) to perform CWS. In this paper, we annotate a new dataset for CWS containing text and audio. Moreover, we propose a time-dependent multi-modal interactive model based on Transformer framework to integrate multi-modal information for word sequence labeling. The experimental results on three different training sets show the effectiveness of our approach with fusing text and audio.

pdf bib
Joint Multi-modal Aspect-Sentiment Analysis with Auxiliary Cross-modal Relation Detection
Xincheng Ju | Dong Zhang | Rong Xiao | Junhui Li | Shoushan Li | Min Zhang | Guodong Zhou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Aspect terms extraction (ATE) and aspect sentiment classification (ASC) are two fundamental and fine-grained sub-tasks in aspect-level sentiment analysis (ALSA). In the textual analysis, joint extracting both aspect terms and sentiment polarities has been drawn much attention due to the better applications than individual sub-task. However, in the multi-modal scenario, the existing studies are limited to handle each sub-task independently, which fails to model the innate connection between the above two objectives and ignores the better applications. Therefore, in this paper, we are the first to jointly perform multi-modal ATE (MATE) and multi-modal ASC (MASC), and we propose a multi-modal joint learning approach with auxiliary cross-modal relation detection for multi-modal aspect-level sentiment analysis (MALSA). Specifically, we first build an auxiliary text-image relation detection module to control the proper exploitation of visual information. Second, we adopt the hierarchical framework to bridge the multi-modal connection between MATE and MASC, as well as separately visual guiding for each sub module. Finally, we can obtain all aspect-level sentiment polarities dependent on the jointly extracted specific aspects. Extensive experiments show the effectiveness of our approach against the joint textual approaches, pipeline and collapsed multi-modal approaches.

2020

pdf bib
Improving AMR Parsing with Sequence-to-Sequence Pre-trainingAMR Parsing with Sequence-to-Sequence Pre-training
Dongqin Xu | Junhui Li | Muhua Zhu | Min Zhang | Guodong Zhou
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In the literature, the research on abstract meaning representation (AMR) parsing is much restricted by the size of human-curated dataset which is critical to build an AMR parser with good performance. To alleviate such data size restriction, pre-trained models have been drawing more and more attention in AMR parsing. However, previous pre-trained models, like BERT, are implemented for general purpose which may not work as expected for the specific task of AMR parsing. In this paper, we focus on sequence-to-sequence (seq2seq) AMR parsing and propose a seq2seq pre-training approach to build pre-trained models in both single and joint way on three relevant tasks, i.e., machine translation, syntactic parsing, and AMR parsing itself. Moreover, we extend the vanilla fine-tuning method to a multi-task learning fine-tuning method that optimizes for the performance of AMR parsing while endeavors to preserve the response of pre-trained models. Extensive experimental results on two English benchmark datasets show that both the single and joint pre-trained models significantly improve the performance (e.g., from 71.5 to 80.2 on AMR 2.0), which reaches the state of the art. The result is very encouraging since we achieve this with seq2seq models rather than complex models. We make our code and model available at https:// github.com/xdqkid/S2S-AMR-Parser.

pdf bib
Multi-modal Multi-label Emotion Detection with Modality and Label Dependence
Dong Zhang | Xincheng Ju | Junhui Li | Shoushan Li | Qiaoming Zhu | Guodong Zhou
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

As an important research issue in the natural language processing community, multi-label emotion detection has been drawing more and more attention in the last few years. However, almost all existing studies focus on one modality (e.g., textual modality). In this paper, we focus on multi-label emotion detection in a multi-modal scenario. In this scenario, we need to consider both the dependence among different labels (label dependence) and the dependence between each predicting label and different modalities (modality dependence). Particularly, we propose a multi-modal sequence-to-set approach to effectively model both kinds of dependence in multi-modal multi-label emotion detection. The detailed evaluation demonstrates the effectiveness of our approach.

2019

pdf bib
Negative Focus Detection via Contextual Attention Mechanism
Longxiang Shen | Bowei Zou | Yu Hong | Guodong Zhou | Qiaoming Zhu | AiTi Aw
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Negation is a universal but complicated linguistic phenomenon, which has received considerable attention from the NLP community over the last decade, since a negated statement often carries both an explicit negative focus and implicit positive meanings. For the sake of understanding a negated statement, it is critical to precisely detect the negative focus in context. However, how to capture contextual information for negative focus detection is still an open challenge. To well address this, we come up with an attention-based neural network to model contextual information. In particular, we introduce a framework which consists of a Bidirectional Long Short-Term Memory (BiLSTM) neural network and a Conditional Random Fields (CRF) layer to effectively encode the order information and the long-range context dependency in a sentence. Moreover, we design two types of attention mechanisms, word-level contextual attention and topic-level contextual attention, to take advantage of contextual information across sentences from both the word perspective and the topic perspective, respectively. Experimental results on the SEM’12 shared task corpus show that our approach achieves the best performance on negative focus detection, yielding an absolute improvement of 2.11 % over the state-of-the-art. This demonstrates the great effectiveness of the two types of contextual attention mechanisms.

pdf bib
Modeling Graph Structure in Transformer for Better AMR-to-Text GenerationAMR-to-Text Generation
Jie Zhu | Junhui Li | Muhua Zhu | Longhua Qian | Min Zhang | Guodong Zhou
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recent studies on AMR-to-text generation often formalize the task as a sequence-to-sequence (seq2seq) learning problem by converting an Abstract Meaning Representation (AMR) graph into a word sequences. Graph structures are further modeled into the seq2seq framework in order to utilize the structural information in the AMR graphs. However, previous approaches only consider the relations between directly connected concepts while ignoring the rich structure in AMR graphs. In this paper we eliminate such a strong limitation and propose a novel structure-aware self-attention approach to better model the relations between indirectly connected concepts in the state-of-the-art seq2seq model, i.e. the Transformer. In particular, a few different methods are explored to learn structural representations between two concepts. Experimental results on English AMR benchmark datasets show that our approach significantly outperforms the state-of-the-art with 29.66 and 31.82 BLEU scores on LDC2015E86 and LDC2017T10, respectively. To the best of our knowledge, these are the best results achieved so far by supervised models on the benchmarks.

2018

pdf bib
Incorporating Image Matching Into Knowledge Acquisition for Event-Oriented Relation Recognition
Yu Hong | Yang Xu | Huibin Ruan | Bowei Zou | Jianmin Yao | Guodong Zhou
Proceedings of the 27th International Conference on Computational Linguistics

Event relation recognition is a challenging language processing task. It is required to determine the relation class of a pair of query events, such as causality, under the condition that there is n’t any reliable clue for use. We follow the traditional statistical approach in this paper, speculating the relation class of the target events based on the relation-class distributions on the similar events. There is minimal supervision used during the speculation process. In particular, we incorporate image processing into the acquisition of similar event instances, including the utilization of images for visually representing event scenes, and the use of the neural network based image matching for approximate calculation between events. We test our method on the ACE-R2 corpus and compared our model with the fully-supervised neural network models. Experimental results show that we achieve a comparable performance to CNN while slightly better than LSTM.

pdf bib
Adversarial Feature Adaptation for Cross-lingual Relation Classification
Bowei Zou | Zengzhuang Xu | Yu Hong | Guodong Zhou
Proceedings of the 27th International Conference on Computational Linguistics

Relation Classification aims to classify the semantic relationship between two marked entities in a given sentence. It plays a vital role in a variety of natural language processing applications. Most existing methods focus on exploiting mono-lingual data, e.g., in English, due to the lack of annotated data in other languages. In this paper, we come up with a feature adaptation approach for cross-lingual relation classification, which employs a generative adversarial network (GAN) to transfer feature representations from one language with rich annotated data to another language with scarce annotated data. Such a feature adaptation approach enables feature imitation via the competition between a relation classification network and a rival discriminator. Experimental results on the ACE 2005 multilingual training corpus, treating English as the source language and Chinese the target, demonstrate the effectiveness of our proposed approach, yielding an improvement of 5.7 % over the state-of-the-art.

pdf bib
Joint Modeling of Structure Identification and Nuclearity Recognition in Macro Chinese Discourse TreebankChinese Discourse Treebank
Xiaomin Chu | Feng Jiang | Yi Zhou | Guodong Zhou | Qiaoming Zhu
Proceedings of the 27th International Conference on Computational Linguistics

Discourse parsing is a challenging task and plays a critical role in discourse analysis. This paper focus on the macro level discourse structure analysis, which has been less studied in the previous researches. We explore a macro discourse structure presentation schema to present the macro level discourse structure, and propose a corresponding corpus, named Macro Chinese Discourse Treebank. On these bases, we concentrate on two tasks of macro discourse structure analysis, including structure identification and nuclearity recognition. In order to reduce the error transmission between the associated tasks, we adopt a joint model of the two tasks, and an Integer Linear Programming approach is proposed to achieve global optimization with various kinds of constraints.

pdf bib
Modeling Coherence for Neural Machine Translation with Dynamic and Topic Caches
Shaohui Kuang | Deyi Xiong | Weihua Luo | Guodong Zhou
Proceedings of the 27th International Conference on Computational Linguistics

Sentences in a well-formed text are connected to each other via various links to form the cohesive structure of the text. Current neural machine translation (NMT) systems translate a text in a conventional sentence-by-sentence fashion, ignoring such cross-sentence links and dependencies. This may lead to generate an incoherent target text for a coherent source text. In order to handle this issue, we propose a cache-based approach to modeling coherence for neural machine translation by capturing contextual information either from recently translated sentences or the entire document. Particularly, we explore two types of caches : a dynamic cache, which stores words from the best translation hypotheses of preceding sentences, and a topic cache, which maintains a set of target-side topical words that are semantically related to the document to be translated. On this basis, we build a new layer to score target words in these two caches with a cache-based neural model. Here the estimated probabilities from the cache-based neural model are combined with NMT probabilities into the final word prediction probabilities via a gating mechanism. Finally, the proposed cache-based neural model is trained jointly with NMT system in an end-to-end manner. Experiments and analysis presented in this paper demonstrate that the proposed cache-based model achieves substantial improvements over several state-of-the-art SMT and NMT baselines.

pdf bib
Stance Detection with Hierarchical Attention Network
Qingying Sun | Zhongqing Wang | Qiaoming Zhu | Guodong Zhou
Proceedings of the 27th International Conference on Computational Linguistics

Stance detection aims to assign a stance label (for or against) to a post toward a specific target. Recently, there is a growing interest in using neural models to detect stance of documents. Most of these works model the sequence of words to learn document representation. However, much linguistic information, such as polarity and arguments of the document, is correlated with the stance of the document, and can inspire us to explore the stance. Hence, we present a neural model to fully employ various linguistic information to construct the document representation. In addition, since the influences of different linguistic information are different, we propose a hierarchical attention network to weigh the importance of various linguistic information, and learn the mutual attention between the document and the linguistic information. The experimental results on two datasets demonstrate the effectiveness of the proposed hierarchical attention neural model.

pdf bib
One vs. Many QA Matching with both Word-level and Sentence-level Attention NetworkQA Matching with both Word-level and Sentence-level Attention Network
Lu Wang | Shoushan Li | Changlong Sun | Luo Si | Xiaozhong Liu | Min Zhang | Guodong Zhou
Proceedings of the 27th International Conference on Computational Linguistics

Question-Answer (QA) matching is a fundamental task in the Natural Language Processing community. In this paper, we first build a novel QA matching corpus with informal text which is collected from a product reviewing website. Then, we propose a novel QA matching approach, namely One vs. Many Matching, which aims to address the novel scenario where one question sentence often has an answer with multiple sentences. Furthermore, we improve our matching approach by employing both word-level and sentence-level attentions for solving the noisy problem in the informal text. Empirical studies demonstrate the effectiveness of the proposed approach to question-answer matching.

pdf bib
Using active learning to expand training data for implicit discourse relation recognition
Yang Xu | Yu Hong | Huibin Ruan | Jianmin Yao | Min Zhang | Guodong Zhou
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We tackle discourse-level relation recognition, a problem of determining semantic relations between text spans. Implicit relation recognition is challenging due to the lack of explicit relational clues. The increasingly popular neural network techniques have been proven effective for semantic encoding, whereby widely employed to boost semantic relation discrimination. However, learning to predict semantic relations at a deep level heavily relies on a great deal of training data, but the scale of the publicly available data in this field is limited. In this paper, we follow Rutherford and Xue (2015) to expand the training data set using the corpus of explicitly-related arguments, by arbitrarily dropping the overtly presented discourse connectives. On the basis, we carry out an experiment of sampling, in which a simple active learning approach is used, so as to take the informative instances for data expansion. The goal is to verify whether the selective use of external data not only reduces the time consumption of retraining but also ensures a better system performance. Using the expanded training data, we retrain a convolutional neural network (CNN) based classifer which is a simplified version of Qin et al. (2016)’s stacking gated relation recognizer. Experimental results show that expanding the training set with small-scale carefully-selected external data yields substantial performance gain, with the improvements of about 4 % for accuracy and 3.6 % for F-score. This allows a weak classifier to achieve a comparable performance against the state-of-the-art systems.

pdf bib
Self-regulation : Employing a Generative Adversarial Network to Improve Event Detection
Yu Hong | Wenxuan Zhou | Jingli Zhang | Guodong Zhou | Qiaoming Zhu
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Due to the ability of encoding and mapping semantic information into a high-dimensional latent feature space, neural networks have been successfully used for detecting events to a certain extent. However, such a feature space can be easily contaminated by spurious features inherent in event detection. In this paper, we propose a self-regulated learning approach by utilizing a generative adversarial network to generate spurious features. On the basis, we employ a recurrent network to eliminate the fakes. Detailed experiments on the ACE 2005 and TAC-KBP 2015 corpora show that our proposed method is highly effective and adaptable.

2017

pdf bib
Modeling Source Syntax for Neural Machine Translation
Junhui Li | Deyi Xiong | Zhaopeng Tu | Muhua Zhu | Min Zhang | Guodong Zhou
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Even though a linguistics-free sequence to sequence model in neural machine translation (NMT) has certain capability of implicitly learning syntactic information of source sentences, this paper shows that source syntax can be explicitly incorporated into NMT effectively to provide further improvements. Specifically, we linearize parse trees of source sentences to obtain structural label sequences. On the basis, we propose three different sorts of encoders to incorporate source syntax into NMT : 1) Parallel RNN encoder that learns word and label annotation vectors parallelly ; 2) Hierarchical RNN encoder that learns word and label annotation vectors in a two-level hierarchy ; and 3) Mixed RNN encoder that stitchingly learns word and label annotation vectors over sequences where words and labels are mixed. Experimentation on Chinese-to-English translation demonstrates that all the three proposed syntactic encoders are able to improve translation accuracy. It is interesting to note that the simplest RNN encoder, i.e., Mixed RNN encoder yields the best performance with an significant improvement of 1.4 BLEU points. Moreover, an in-depth analysis from several perspectives is provided to reveal how source syntax benefits NMT.