Jackie Chi Kit Cheung

Also published as: Jackie Cheung


2021

pdf bib
ADEPT : An Adjective-Dependent Plausibility TaskADEPT: An Adjective-Dependent Plausibility Task
Ali Emami | Ian Porada | Alexandra Olteanu | Kaheer Suleman | Adam Trischler | Jackie Chi Kit Cheung
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

A false contract is more likely to be rejected than a contract is, yet a false key is less likely than a key to open doors. While correctly interpreting and assessing the effects of such adjective-noun pairs (e.g., false key) on the plausibility of given events (e.g., opening doors) underpins many natural language understanding tasks, doing so often requires a significant degree of world knowledge and common-sense reasoning. We introduce ADEPT a large-scale semantic plausibility task consisting of over 16 thousand sentences that are paired with slightly modified versions obtained by adding an adjective to a noun. Overall, we find that while the task appears easier for human judges (85 % accuracy), it proves more difficult for transformer-based models like RoBERTa (71 % accuracy). Our experiments also show that neither the adjective itself nor its taxonomic class suffice in determining the correct plausibility judgement, emphasizing the importance of endowing automatic natural language understanding systems with more context sensitivity and common-sense reasoning.

pdf bib
Proceedings of the Third Workshop on New Frontiers in Summarization
Giuseppe Carenini | Jackie Chi Kit Cheung | Yue Dong | Fei Liu | Lu Wang
Proceedings of the Third Workshop on New Frontiers in Summarization

2020

pdf bib
On the Systematicity of Probing Contextualized Word Representations : The Case of Hypernymy in BERTBERT
Abhilasha Ravichander | Eduard Hovy | Kaheer Suleman | Adam Trischler | Jackie Chi Kit Cheung
Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics

Contextualized word representations have become a driving force in NLP, motivating widespread interest in understanding their capabilities and the mechanisms by which they operate. Particularly intriguing is their ability to identify and encode conceptual abstractions. Past work has probed BERT representations for this competence, finding that BERT can correctly retrieve noun hypernyms in cloze tasks. In this work, we ask the question : do probing studies shed light on systematic knowledge in BERT representations? As a case study, we examine hypernymy knowledge encoded in BERT representations. In particular, we demonstrate through a simple consistency probe that the ability to correctly retrieve hypernyms in cloze tasks, as used in prior work, does not correspond to systematic knowledge in BERT. Our main conclusion is cautionary : even if BERT demonstrates high probing accuracy for a particular competence, it does not necessarily follow that BERT ‘understands’ a concept, and it can not be expected to systematically generalize across applicable contexts.do probing studies shed light on systematic knowledge in BERT representations? As a case study, we examine hypernymy knowledge encoded in BERT representations. In particular, we demonstrate through a simple consistency probe that the ability to correctly retrieve hypernyms in cloze tasks, as used in prior work, does not correspond to systematic knowledge in BERT. Our main conclusion is cautionary: even if BERT demonstrates high probing accuracy for a particular competence, it does not necessarily follow that BERT ‘understands’ a concept, and it cannot be expected to systematically generalize across applicable contexts.

pdf bib
TESA : A Task in Entity Semantic Aggregation for Abstractive SummarizationTESA: A Task in Entity Semantic Aggregation for Abstractive Summarization
Clément Jumel | Annie Louis | Jackie Chi Kit Cheung
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Human-written texts contain frequent generalizations and semantic aggregation of content. In a document, they may refer to a pair of named entities such as ‘London’ and ‘Paris’ with different expressions : the major cities, the capital cities and two European cities. Yet generation, especially, abstractive summarization systems have so far focused heavily on paraphrasing and simplifying the source content, to the exclusion of such semantic abstraction capabilities. In this paper, we present a new dataset and task aimed at the semantic aggregation of entities. TESA contains a dataset of 5.3 K crowd-sourced entity aggregations of Person, Organization, and Location named entities. The aggregations are document-appropriate, meaning that they are produced by annotators to match the situational context of a given news article from the New York Times. We then build baseline models for generating aggregations given a tuple of entities and document context. We finetune on TESA an encoder-decoder language model and compare it with simpler classification methods based on linguistically informed features. Our quantitative and qualitative evaluations show reasonable performance in making a choice from a given list of expressions, but free-form expressions are understandably harder to generate and evaluate.

pdf bib
An Analysis of Dataset Overlap on Winograd-Style TasksWinograd-Style Tasks
Ali Emami | Kaheer Suleman | Adam Trischler | Jackie Chi Kit Cheung
Proceedings of the 28th International Conference on Computational Linguistics

The Winograd Schema Challenge (WSC) and variants inspired by it have become important benchmarks for common-sense reasoning (CSR). Model performance on the WSC has quickly progressed from chance-level to near-human using neural language models trained on massive corpora. In this paper, we analyze the effects of varying degrees of overlaps that occur between these corpora and the test instances in WSC-style tasks. We find that a large number of test instances overlap considerably with the pretraining corpora on which state-of-the-art models are trained, and that a significant drop in classification accuracy occurs when models are evaluated on instances with minimal overlap. Based on these results, we provide the WSC-Web dataset, consisting of over 60k pronoun disambiguation problems scraped from web data, being both the largest corpus to date, and having a significantly lower proportion of overlaps with current pretraining corpora.

2019

pdf bib
How Reasonable are Common-Sense Reasoning Tasks : A Case-Study on the Winograd Schema Challenge and SWAGWinograd Schema Challenge and SWAG
Paul Trichelair | Ali Emami | Adam Trischler | Kaheer Suleman | Jackie Chi Kit Cheung
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recent studies have significantly improved the state-of-the-art on common-sense reasoning (CSR) benchmarks like the Winograd Schema Challenge (WSC) and SWAG. The question we ask in this paper is whether improved performance on these benchmarks represents genuine progress towards common-sense-enabled systems. We make case studies of both benchmarks and design protocols that clarify and qualify the results of previous work by analyzing threats to the validity of previous experimental designs. Our protocols account for several properties prevalent in common-sense benchmarks including size limitations, structural regularities, and variable instance difficulty.

pdf bib
Proceedings of the 2nd Workshop on New Frontiers in Summarization
Lu Wang | Jackie Chi Kit Cheung | Giuseppe Carenini | Fei Liu
Proceedings of the 2nd Workshop on New Frontiers in Summarization

pdf bib
Can a Gorilla Ride a Camel? Learning Semantic Plausibility from Text
Ian Porada | Kaheer Suleman | Jackie Chi Kit Cheung
Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing

Modeling semantic plausibility requires commonsense knowledge about the world and has been used as a testbed for exploring various knowledge representations. Previous work has focused specifically on modeling physical plausibility and shown that distributional methods fail when tested in a supervised setting. At the same time, distributional models, namely large pretrained language models, have led to improved results for many natural language understanding tasks. In this work, we show that these pretrained language models are in fact effective at modeling physical plausibility in the supervised setting. We therefore present the more difficult problem of learning to model physical plausibility directly from text. We create a training set by extracting attested events from a large corpus, and we provide a baseline for training on these attested events in a self-supervised manner and testing on a physical plausibility task. We believe results could be further improved by injecting explicit commonsense knowledge into a distributional model.

pdf bib
Understanding the Behaviour of Neural Abstractive Summarizers using Contrastive ExamplesUnderstanding the Behaviour of Neural Abstractive Summarizers using Contrastive Examples
Krtin Kumar | Jackie Chi Kit Cheung
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Neural abstractive summarizers generate summary texts using a language model conditioned on the input source text, and have recently achieved high ROUGE scores on benchmark summarization datasets. We investigate how they achieve this performance with respect to human-written gold-standard abstracts, and whether the systems are able to understand deeper syntactic and semantic structures. We generate a set of contrastive summaries which are perturbed, deficient versions of human-written summaries, and test whether existing neural summarizers score them more highly than the human-written summaries. We analyze their performance on different datasets and find that these systems fail to understand the source text, in a majority of the cases.

pdf bib
EditNTS : An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit EditingEditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
Yue Dong | Zichao Li | Mehdi Rezagholizadeh | Jackie Chi Kit Cheung
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We present the first sentence simplification model that learns explicit edit operations (ADD, DELETE, and KEEP) via a neural programmer-interpreter approach. Most current neural sentence simplification systems are variants of sequence-to-sequence models adopted from machine translation. These methods learn to simplify sentences as a byproduct of the fact that they are trained on complex-simple sentence pairs. By contrast, our neural programmer-interpreter is directly trained to predict explicit edit operations on targeted parts of the input sentence, resembling the way that humans perform simplification and revision. Our model outperforms previous state-of-the-art neural sentence simplification models (without external knowledge) by large margins on three benchmark text simplification corpora in terms of SARI (+0.95 WikiLarge, +1.89 WikiSmall, +1.41 Newsela), and is judged by humans to produce overall better and simpler output sentences.

2018

pdf bib
A Hierarchical Neural Attention-based Text Classifier
Koustuv Sinha | Yue Dong | Jackie Chi Kit Cheung | Derek Ruths
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Deep neural networks have been displaying superior performance over traditional supervised classifiers in text classification. They learn to extract useful features automatically when sufficient amount of data is presented. However, along with the growth in the number of documents comes the increase in the number of categories, which often results in poor performance of the multiclass classifiers. In this work, we use external knowledge in the form of topic category taxonomies to aide the classification by introducing a deep hierarchical neural attention-based classifier. Our model performs better than or comparable to state-of-the-art hierarchical models at significantly lower computational cost while maintaining high interpretability.

pdf bib
BanditSum : Extractive Summarization as a Contextual BanditBanditSum: Extractive Summarization as a Contextual Bandit
Yue Dong | Yikang Shen | Eric Crawford | Herke van Hoof | Jackie Chi Kit Cheung
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In this work, we propose a novel method for training neural networks to perform single-document extractive summarization without heuristically-generated extractive labels. We call our approach BanditSum as it treats extractive summarization as a contextual bandit (CB) problem, where the model receives a document to summarize (the context), and chooses a sequence of sentences to include in the summary (the action). A policy gradient reinforcement learning algorithm is used to train the model to select sequences of sentences that maximize ROUGE score. We perform a series of experiments demonstrating that BanditSum is able to achieve ROUGE scores that are better than or comparable to the state-of-the-art for extractive summarization, and converges using significantly fewer update steps than competing approaches. In addition, we show empirically that BanditSum performs significantly better than competing approaches when good summary sentences appear late in the source document.

pdf bib
Resolving Event Coreference with Supervised Representation Learning and Clustering-Oriented Regularization
Kian Kenyon-Dean | Jackie Chi Kit Cheung | Doina Precup
Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics

We present an approach to event coreference resolution by developing a general framework for clustering that uses supervised representation learning. We propose a neural network architecture with novel Clustering-Oriented Regularization (CORE) terms in the objective function. These terms encourage the model to create embeddings of event mentions that are amenable to clustering. We then use agglomerative clustering on these embeddings to build event coreference chains. For both within- and cross-document coreference on the ECB+ corpus, our model obtains better results than models that require significantly more pre-annotated information. This work provides insight and motivating results for a new general approach to solving coreference and clustering problems with representation learning.

pdf bib
Commonsense mining as knowledge base completion? A study on the impact of novelty
Stanislaw Jastrzębski | Dzmitry Bahdanau | Seyedarian Hosseini | Michael Noukhovitch | Yoshua Bengio | Jackie Cheung
Proceedings of the Workshop on Generalization in the Age of Deep Learning

Commonsense knowledge bases such as ConceptNet represent knowledge in the form of relational triples. Inspired by recent work by Li et al., we analyse if knowledge base completion models can be used to mine commonsense knowledge from raw text. We propose novelty of predicted triples with respect to the training set as an important factor in interpreting results. We critically analyse the difficulty of mining novel commonsense knowledge, and show that a simple baseline method that outperforms the previous state of the art on predicting more novel triples.

pdf bib
Let’s do it again : A First Computational Approach to Detecting Adverbial Presupposition Triggers
Andre Cianflone | Yulan Feng | Jad Kabbara | Jackie Chi Kit Cheung
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce the novel task of predicting adverbial presupposition triggers, which is useful for natural language generation tasks such as summarization and dialogue systems. We introduce two new corpora, derived from the Penn Treebank and the Annotated English Gigaword dataset and investigate the use of a novel attention mechanism tailored to this task. Our attention mechanism augments a baseline recurrent neural network without the need for additional trainable parameters, minimizing the added computational cost of our mechanism. We demonstrate that this model statistically outperforms our baselines.

2017

pdf bib
Proceedings of the Workshop on New Frontiers in Summarization
Lu Wang | Jackie Chi Kit Cheung | Giuseppe Carenini | Fei Liu
Proceedings of the Workshop on New Frontiers in Summarization

pdf bib
Predicting Success in Goal-Driven Human-Human Dialogues
Michael Noseworthy | Jackie Chi Kit Cheung | Joelle Pineau
Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue

In goal-driven dialogue systems, success is often defined based on a structured definition of the goal. This requires that the dialogue system be constrained to handle a specific class of goals and that there be a mechanism to measure success with respect to that goal. However, in many human-human dialogues the diversity of goals makes it infeasible to define success in such a way. To address this scenario, we consider the task of automatically predicting success in goal-driven human-human dialogues using only the information communicated between participants in the form of text. We build a dataset from stackoverflow.com which consists of exchanges between two users in the technical domain where ground-truth success labels are available. We then propose a turn-based hierarchical neural network model that can be used to predict success without requiring a structured goal definition. We show this model outperforms rule-based heuristics and other baselines as it is able to detect patterns over the course of a dialogue and capture notions such as gratitude.

pdf bib
World Knowledge for Reading Comprehension : Rare Entity Prediction with Hierarchical LSTMs Using External DescriptionsLSTMs Using External Descriptions
Teng Long | Emmanuel Bengio | Ryan Lowe | Jackie Chi Kit Cheung | Doina Precup
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Humans interpret texts with respect to some background information, or world knowledge, and we would like to develop automatic reading comprehension systems that can do the same. In this paper, we introduce a task and several models to drive progress towards this goal. In particular, we propose the task of rare entity prediction : given a web document with several entities removed, models are tasked with predicting the correct missing entities conditioned on the document context and the lexical resources. This task is challenging due to the diversity of language styles and the extremely large number of rare entities. We propose two recurrent neural network architectures which make use of external knowledge in the form of entity descriptions. Our experiments show that our hierarchical LSTM model performs significantly better at the rare entity prediction task than those that do not make use of external resources.