Jason Baldridge


2021

pdf bib
Crisscrossed Captions : Extended Intramodal and Intermodal Semantic Similarity Judgments for MS-COCOMS-COCO
Zarana Parekh | Jason Baldridge | Daniel Cer | Austin Waters | Yinfei Yang
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

By supporting multi-modal retrieval training and evaluation, image captioning datasets have spurred remarkable progress on representation learning. Unfortunately, datasets have limited cross-modal associations : images are not paired with other images, captions are only paired with other captions of the same image, there are no negative associations and there are missing positive cross-modal associations. This undermines research into how inter-modality learning impacts intra-modality tasks. We address this gap with Crisscrossed Captions (CxC), an extension of the MS-COCO dataset with human semantic similarity judgments for 267,095 intra- and inter-modality pairs. We report baseline results on CxC for strong existing unimodal and multimodal models. We also evaluate a multitask dual encoder trained on both image-caption and caption-caption pairs that crucially demonstrates CxC’s value for measuring the influence of intra- and inter-modality learning.

2020

pdf bib
Proceedings of the First Workshop on Advances in Language and Vision Research
Xin Wang | Jesse Thomason | Ronghang Hu | Xinlei Chen | Peter Anderson | Qi Wu | Asli Celikyilmaz | Jason Baldridge | William Yang Wang
Proceedings of the First Workshop on Advances in Language and Vision Research

pdf bib
Proceedings of the Third International Workshop on Spatial Language Understanding
Parisa Kordjamshidi | Archna Bhatia | Malihe Alikhani | Jason Baldridge | Mohit Bansal | Marie-Francine Moens
Proceedings of the Third International Workshop on Spatial Language Understanding

2019

pdf bib
Multi-modal Discriminative Model for Vision-and-Language Navigation
Haoshuo Huang | Vihan Jain | Harsh Mehta | Jason Baldridge | Eugene Ie
Proceedings of the Combined Workshop on Spatial Language Understanding (SpLU) and Grounded Communication for Robotics (RoboNLP)

Vision-and-Language Navigation (VLN) is a natural language grounding task where agents have to interpret natural language instructions in the context of visual scenes in a dynamic environment to achieve prescribed navigation goals. Successful agents must have the ability to parse natural language of varying linguistic styles, ground them in potentially unfamiliar scenes, plan and react with ambiguous environmental feedback. Generalization ability is limited by the amount of human annotated data. In particular, paired vision-language sequence data is expensive to collect. We develop a discriminator that evaluates how well an instruction explains a given path in VLN task using multi-modal alignment. Our study reveals that only a small fraction of the high-quality augmented data from Fried et al., as scored by our discriminator, is useful for training VLN agents with similar performance. We also show that a VLN agent warm-started with pre-trained components from the discriminator outperforms the benchmark success rates of 35.5 by 10 % relative measure.

pdf bib
PAWS : Paraphrase Adversaries from Word ScramblingPAWS: Paraphrase Adversaries from Word Scrambling
Yuan Zhang | Jason Baldridge | Luheng He
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Existing paraphrase identification datasets lack sentence pairs that have high lexical overlap without being paraphrases. Models trained on such data fail to distinguish pairs like flights from New York to Florida and flights from Florida to New York. This paper introduces PAWS (Paraphrase Adversaries from Word Scrambling), a new dataset with 108,463 well-formed paraphrase and non-paraphrase pairs with high lexical overlap. Challenging pairs are generated by controlled word swapping and back translation, followed by fluency and paraphrase judgments by human raters. State-of-the-art models trained on existing datasets have dismal performance on PAWS (40 % accuracy) ; however, including PAWS training data for these models improves their accuracy to 85 % while maintaining performance on existing tasks. In contrast, models that do not capture non-local contextual information fail even with PAWS training examples. As such, PAWS provides an effective instrument for driving further progress on models that better exploit structure, context, and pairwise comparisons.

pdf bib
Stay on the Path : Instruction Fidelity in Vision-and-Language Navigation
Vihan Jain | Gabriel Magalhaes | Alexander Ku | Ashish Vaswani | Eugene Ie | Jason Baldridge
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Advances in learning and representations have reinvigorated work that connects language to other modalities. A particularly exciting direction is Vision-and-Language Navigation(VLN), in which agents interpret natural language instructions and visual scenes to move through environments and reach goals. Despite recent progress, current research leaves unclear how much of a role language under-standing plays in this task, especially because dominant evaluation metrics have focused on goal completion rather than the sequence of actions corresponding to the instructions. Here, we highlight shortcomings of current metrics for the Room-to-Room dataset (Anderson et al.,2018b) and propose a new metric, Coverage weighted by Length Score (CLS). We also show that the existing paths in the dataset are not ideal for evaluating instruction following because they are direct-to-goal shortest paths. We join existing short paths to form more challenging extended paths to create a new data set, Room-for-Room (R4R). Using R4R and CLS, we show that agents that receive rewards for instruction fidelity outperform agents that focus on goal completion.

pdf bib
Learning Dense Representations for Entity Retrieval
Daniel Gillick | Sayali Kulkarni | Larry Lansing | Alessandro Presta | Jason Baldridge | Eugene Ie | Diego Garcia-Olano
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

We show that it is feasible to perform entity linking by training a dual encoder (two-tower) model that encodes mentions and entities in the same dense vector space, where candidate entities are retrieved by approximate nearest neighbor search. Unlike prior work, this setup does not rely on an alias table followed by a re-ranker, and is thus the first fully learned entity retrieval model. We show that our dual encoder, trained using only anchor-text links in Wikipedia, outperforms discrete alias table and BM25 baselines, and is competitive with the best comparable results on the standard TACKBP-2010 dataset. In addition, it can retrieve candidates extremely fast, and generalizes well to a new dataset derived from Wikinews. On the modeling side, we demonstrate the dramatic value of an unsupervised negative mining algorithm for this task.

2018

pdf bib
Points, Paths, and Playscapes : Large-scale Spatial Language Understanding Tasks Set in the Real World
Jason Baldridge | Tania Bedrax-Weiss | Daphne Luong | Srini Narayanan | Bo Pang | Fernando Pereira | Radu Soricut | Michael Tseng | Yuan Zhang
Proceedings of the First International Workshop on Spatial Language Understanding

Spatial language understanding is important for practical applications and as a building block for better abstract language understanding. Much progress has been made through work on understanding spatial relations and values in images and texts as well as on giving and following navigation instructions in restricted domains. We argue that the next big advances in spatial language understanding can be best supported by creating large-scale datasets that focus on points and paths based in the real world, and then extending these to create online, persistent playscapes that mix human and bot players, where the bot players must learn, evolve, and survive according to their depth of understanding of scenes, navigation, and interactions.