Loïc Barrault

Also published as: Loic Barrault


pdf bib
Proceedings of the Sixth Conference on Machine Translation
Loic Barrault | Ondrej Bojar | Fethi Bougares | Rajen Chatterjee | Marta R. Costa-jussa | Christian Federmann | Mark Fishel | Alexander Fraser | Markus Freitag | Yvette Graham | Roman Grundkiewicz | Paco Guzman | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | Tom Kocmi | Andre Martins | Makoto Morishita | Christof Monz
Proceedings of the Sixth Conference on Machine Translation


pdf bib
Simultaneous Machine Translation with Visual Context
Ozan Caglayan | Julia Ive | Veneta Haralampieva | Pranava Madhyastha | Loïc Barrault | Lucia Specia
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Simultaneous machine translation (SiMT) aims to translate a continuous input text stream into another language with the lowest latency and highest quality possible. The translation thus has to start with an incomplete source text, which is read progressively, creating the need for anticipation. In this paper, we seek to understand whether the addition of visual information can compensate for the missing source context. To this end, we analyse the impact of different multimodal approaches and visual features on state-of-the-art SiMT frameworks. Our results show that visual context is helpful and that visually-grounded models based on explicit object region information are much better than commonly used global features, reaching up to 3 BLEU points improvement under low latency scenarios. Our qualitative analysis illustrates cases where only the multimodal systems are able to translate correctly from English into gender-marked languages, as well as deal with differences in word order, such as adjective-noun placement between English and French.

pdf bib
Proceedings of the Fifth Conference on Machine Translation
Loïc Barrault | Ondřej Bojar | Fethi Bougares | Rajen Chatterjee | Marta R. Costa-jussà | Christian Federmann | Mark Fishel | Alexander Fraser | Yvette Graham | Paco Guzman | Barry Haddow | Matthias Huck | Antonio Jimeno Yepes | Philipp Koehn | André Martins | Makoto Morishita | Christof Monz | Masaaki Nagata | Toshiaki Nakazawa | Matteo Negri
Proceedings of the Fifth Conference on Machine Translation


pdf bib
Probing the Need for Visual Context in Multimodal Machine Translation
Ozan Caglayan | Pranava Madhyastha | Lucia Specia | Loïc Barrault
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Current work on multimodal machine translation (MMT) has suggested that the visual modality is either unnecessary or only marginally beneficial. We posit that this is a consequence of the very simple, short and repetitive sentences used in the only available dataset for the task (Multi30 K), rendering the source text sufficient as context. In the general case, however, we believe that it is possible to combine visual and textual information in order to ground translations. In this paper we probe the contribution of the visual modality to state-of-the-art MMT models by conducting a systematic analysis where we partially deprive the models from source-side textual context. Our results show that under limited textual context, models are capable of leveraging the visual input to generate better translations. This contradicts the current belief that MMT models disregard the visual modality because of either the quality of the image features or the way they are integrated into the model.

pdf bib
The IWSLT 2019 Evaluation CampaignIWSLT 2019 Evaluation Campaign
Jan Niehues | Rolando Cattoni | Sebastian Stüker | Matteo Negri | Marco Turchi | Thanh-Le Ha | Elizabeth Salesky | Ramon Sanabria | Loic Barrault | Lucia Specia | Marcello Federico
Proceedings of the 16th International Conference on Spoken Language Translation

The IWSLT 2019 evaluation campaign featured three tasks : speech translation of (i) TED talks and (ii) How2 instructional videos from English into German and Portuguese, and (iii) text translation of TED talks from English into Czech. For the first two tasks we encouraged submissions of end- to-end speech-to-text systems, and for the second task participants could also use the video as additional input. We received submissions by 12 research teams. This overview provides detailed descriptions of the data and evaluation conditions of each task and reports results of the participating systems.


pdf bib
What you can cram into a single $ & ! # * vector : Probing sentence embeddings for linguistic properties
Alexis Conneau | German Kruszewski | Guillaume Lample | Loïc Barrault | Marco Baroni
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Although much effort has recently been devoted to training high-quality sentence embeddings, we still have a poor understanding of what they are capturing. Downstream tasks, often based on sentence classification, are commonly used to evaluate the quality of sentence representations. The complexity of the tasks makes it however difficult to infer what kind of information is present in the representations. We introduce here 10 probing tasks designed to capture simple linguistic features of sentences, and we use them to study embeddings generated by three different encoders trained in eight distinct ways, uncovering intriguing properties of both encoders and training methods.


pdf bib
Supervised Learning of Universal Sentence Representations from Natural Language Inference Data
Alexis Conneau | Douwe Kiela | Holger Schwenk | Loïc Barrault | Antoine Bordes
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Many modern NLP systems rely on word embeddings, previously trained in an unsupervised manner on large corpora, as base features. Efforts to obtain embeddings for larger chunks of text, such as sentences, have however not been so successful. Several attempts at learning unsupervised representations of sentences have not reached satisfactory enough performance to be widely adopted. In this paper, we show how universal sentence representations trained using the supervised data of the Stanford Natural Language Inference datasets can consistently outperform unsupervised methods like SkipThought vectors on a wide range of transfer tasks. Much like how computer vision uses ImageNet to obtain features, which can then be transferred to other tasks, our work tends to indicate the suitability of natural language inference for transfer learning to other NLP tasks. Our encoder is publicly available.

pdf bib
Very Deep Convolutional Networks for Text Classification
Alexis Conneau | Holger Schwenk | Loïc Barrault | Yann Lecun
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

The dominant approach for many NLP tasks are recurrent neural networks, in particular LSTMs, and convolutional neural networks. However, these architectures are rather shallow in comparison to the deep convolutional networks which have pushed the state-of-the-art in computer vision. We present a new architecture (VDCNN) for text processing which operates directly at the character level and uses only small convolutions and pooling operations. We are able to show that the performance of this model increases with the depth : using up to 29 convolutional layers, we report improvements over the state-of-the-art on several public text classification tasks. To the best of our knowledge, this is the first time that very deep convolutional nets have been applied to text processing.