Marie-Catherine de Marneffe


2021

pdf bib
Identifying inherent disagreement in natural language inference
Xinliang Frederick Zhang | Marie-Catherine de Marneffe
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Natural language inference (NLI) is the task of determining whether a piece of text is entailed, contradicted by or unrelated to another piece of text. In this paper, we investigate how to tease systematic inferences (i.e., items for which people agree on the NLI label) apart from disagreement items (i.e., items which lead to different annotations), which most prior work has overlooked. To distinguish systematic inferences from disagreement items, we propose Artificial Annotators (AAs) to simulate the uncertainty in the annotation process by capturing the modes in annotations. Results on the CommitmentBank, a corpus of naturally occurring discourses in English, confirm that our approach performs statistically significantly better than all baselines. We further show that AAs learn linguistic patterns and context-dependent reasoning.

2020

pdf bib
Proceedings of the Fourth Workshop on Universal Dependencies (UDW 2020)
Marie-Catherine de Marneffe | Miryam de Lhoneux | Joakim Nivre | Sebastian Schuster
Proceedings of the Fourth Workshop on Universal Dependencies (UDW 2020)

2019

pdf bib
Practical, Efficient, and Customizable Active Learning for Named Entity Recognition in the Digital Humanities
Alexander Erdmann | David Joseph Wrisley | Benjamin Allen | Christopher Brown | Sophie Cohen-Bodénès | Micha Elsner | Yukun Feng | Brian Joseph | Béatrice Joyeux-Prunel | Marie-Catherine de Marneffe
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Scholars in inter-disciplinary fields like the Digital Humanities are increasingly interested in semantic annotation of specialized corpora. Yet, under-resourced languages, imperfect or noisily structured data, and user-specific classification tasks make it difficult to meet their needs using off-the-shelf models. Manual annotation of large corpora from scratch, meanwhile, can be prohibitively expensive. Thus, we propose an active learning solution for named entity recognition, attempting to maximize a custom model’s improvement per additional unit of manual annotation. Our system robustly handles any domain or user-defined label set and requires no external resources, enabling quality named entity recognition for Humanities corpora where such resources are not available. Evaluating on typologically disparate languages and datasets, we reduce required annotation by 20-60 % and greatly outperform a competitive active learning baseline.

2018

pdf bib
Proceedings of the Second Workshop on Universal Dependencies (UDW 2018)
Marie-Catherine de Marneffe | Teresa Lynn | Sebastian Schuster
Proceedings of the Second Workshop on Universal Dependencies (UDW 2018)

pdf bib
Proceedings of ACL 2018, Student Research Workshop
Vered Shwartz | Jeniya Tabassum | Rob Voigt | Wanxiang Che | Marie-Catherine de Marneffe | Malvina Nissim
Proceedings of ACL 2018, Student Research Workshop

2017

pdf bib
CoNLL 2017 Shared Task : Multilingual Parsing from Raw Text to Universal DependenciesCoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
Daniel Zeman | Martin Popel | Milan Straka | Jan Hajič | Joakim Nivre | Filip Ginter | Juhani Luotolahti | Sampo Pyysalo | Slav Petrov | Martin Potthast | Francis Tyers | Elena Badmaeva | Memduh Gokirmak | Anna Nedoluzhko | Silvie Cinková | Jan Hajič jr. | Jaroslava Hlaváčová | Václava Kettnerová | Zdeňka Urešová | Jenna Kanerva | Stina Ojala | Anna Missilä | Christopher D. Manning | Sebastian Schuster | Siva Reddy | Dima Taji | Nizar Habash | Herman Leung | Marie-Catherine de Marneffe | Manuela Sanguinetti | Maria Simi | Hiroshi Kanayama | Valeria de Paiva | Kira Droganova | Héctor Martínez Alonso | Çağrı Çöltekin | Umut Sulubacak | Hans Uszkoreit | Vivien Macketanz | Aljoscha Burchardt | Kim Harris | Katrin Marheinecke | Georg Rehm | Tolga Kayadelen | Mohammed Attia | Ali Elkahky | Zhuoran Yu | Emily Pitler | Saran Lertpradit | Michael Mandl | Jesse Kirchner | Hector Fernandez Alcalde | Jana Strnadová | Esha Banerjee | Ruli Manurung | Antonio Stella | Atsuko Shimada | Sookyoung Kwak | Gustavo Mendonça | Tatiana Lando | Rattima Nitisaroj | Josie Li
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

The Conference on Computational Natural Language Learning (CoNLL) features a shared task, in which participants train and test their learning systems on the same data sets. In 2017, the task was devoted to learning dependency parsers for a large number of languages, in a real-world setting without any gold-standard annotation on input. All test sets followed a unified annotation scheme, namely that of Universal Dependencies. In this paper, we define the task and evaluation methodology, describe how the data sets were prepared, report and analyze the main results, and provide a brief categorization of the different approaches of the participating systems.

pdf bib
Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017)
Marie-Catherine de Marneffe | Joakim Nivre | Sebastian Schuster
Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017)

pdf bib
Breaking NLP : Using Morphosyntax, Semantics, Pragmatics and World Knowledge to Fool Sentiment Analysis SystemsNLP: Using Morphosyntax, Semantics, Pragmatics and World Knowledge to Fool Sentiment Analysis Systems
Taylor Mahler | Willy Cheung | Micha Elsner | David King | Marie-Catherine de Marneffe | Cory Shain | Symon Stevens-Guille | Michael White
Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems

This paper describes our breaker submission to the 2017 EMNLP Build It Break It shared task on sentiment analysis. In order to cause the builder systems to make incorrect predictions, we edited items in the blind test data according to linguistically interpretable strategies that allow us to assess the ease with which the builder systems learn various components of linguistic structure. On the whole, our submitted pairs break all systems at a high rate (72.6 %), indicating that sentiment analysis as an NLP task may still have a lot of ground to cover. Of the breaker strategies that we consider, we find our semantic and pragmatic manipulations to pose the most substantial difficulties for the builder systems.

pdf bib
i have a feeling trump will win.................. : Forecasting Winners and Losers from User Predictions on TwitterTwitter
Sandesh Swamy | Alan Ritter | Marie-Catherine de Marneffe
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Social media users often make explicit predictions about upcoming events. Such statements vary in the degree of certainty the author expresses toward the outcome : Leonardo DiCaprio will win Best Actor vs. Leonardo DiCaprio may win or No way Leonardo wins !. Can popular beliefs on social media predict who will win? To answer this question, we build a corpus of tweets annotated for veridicality on which we train a log-linear classifier that detects positive veridicality with high precision. We then forecast uncertain outcomes using the wisdom of crowds, by aggregating users’ explicit predictions. Our method for forecasting winners is fully automated, relying only on a set of contenders as input. It requires no training data of past outcomes and outperforms sentiment and tweet volume baselines on a broad range of contest prediction tasks. We further demonstrate how our approach can be used to measure the reliability of individual accounts’ predictions and retrospectively identify surprise outcomes.