Radu Tudor Ionescu


2021

pdf bib
SaRoCo : Detecting Satire in a Novel Romanian Corpus of News ArticlesSaRoCo: Detecting Satire in a Novel Romanian Corpus of News Articles
Ana-Cristina Rogoz | Gaman Mihaela | Radu Tudor Ionescu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

In this work, we introduce a corpus for satire detection in Romanian news. We gathered 55,608 public news articles from multiple real and satirical news sources, composing one of the largest corpora for satire detection regardless of language and the only one for the Romanian language. We provide an official split of the text samples, such that training news articles belong to different sources than test news articles, thus ensuring that models do not achieve high performance simply due to overfitting. We conduct experiments with two state-of-the-art deep neural models, resulting in a set of strong baselines for our novel corpus. Our results show that the machine-level accuracy for satire detection in Romanian is quite low (under 73 % on the test set) compared to the human-level accuracy (87 %), leaving enough room for improvement in future research.

2019

pdf bib
MOROCO : The Moldavian and Romanian Dialectal CorpusMOROCO: The Moldavian and Romanian Dialectal Corpus
Andrei Butnaru | Radu Tudor Ionescu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this work, we introduce the MOldavian and ROmanian Dialectal COrpus (MOROCO), which is freely available for download at https://github.com/butnaruandrei/MOROCO. The corpus contains 33564 samples of text (with over 10 million tokens) collected from the news domain. The samples belong to one of the following six topics : culture, finance, politics, science, sports and tech. The data set is divided into 21719 samples for training, 5921 samples for validation and another 5924 samples for testing. For each sample, we provide corresponding dialectal and category labels. This allows us to perform empirical studies on several classification tasks such as (i) binary discrimination of Moldavian versus Romanian text samples, (ii) intra-dialect multi-class categorization by topic and (iii) cross-dialect multi-class categorization by topic. We perform experiments using a shallow approach based on string kernels, as well as a novel deep approach based on character-level convolutional neural networks containing Squeeze-and-Excitation blocks. We also present and analyze the most discriminative features of our best performing model, before and after named entity removal.

2018

pdf bib
Improving the results of string kernels in sentiment analysis and Arabic dialect identification by adapting them to your test setArabic dialect identification by adapting them to your test set
Radu Tudor Ionescu | Andrei M. Butnaru
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Recently, string kernels have obtained state-of-the-art results in various text classification tasks such as Arabic dialect identification or native language identification. In this paper, we apply two simple yet effective transductive learning approaches to further improve the results of string kernels. The first approach is based on interpreting the pairwise string kernel similarities between samples in the training set and samples in the test set as features. Our second approach is a simple self-training method based on two learning iterations. In the first iteration, a classifier is trained on the training set and tested on the test set, as usual. In the second iteration, a number of test samples (to which the classifier associated higher confidence scores) are added to the training set for another round of training. However, the ground-truth labels of the added test samples are not necessary. Instead, we use the labels predicted by the classifier in the first training iteration. By adapting string kernels to the test set, we report significantly better accuracy rates in English polarity classification and Arabic dialect identification.

pdf bib
Automated essay scoring with string kernels and word embeddings
Mădălina Cozma | Andrei Butnaru | Radu Tudor Ionescu
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

In this work, we present an approach based on combining string kernels and word embeddings for automatic essay scoring. String kernels capture the similarity among strings based on counting common character n-grams, which are a low-level yet powerful type of feature, demonstrating state-of-the-art results in various text classification tasks such as Arabic dialect identification or native language identification. To our best knowledge, we are the first to apply string kernels to automatically score essays. We are also the first to combine them with a high-level semantic feature representation, namely the bag-of-super-word-embeddings. We report the best performance on the Automated Student Assessment Prize data set, in both in-domain and cross-domain settings, surpassing recent state-of-the-art deep learning approaches.

2017

pdf bib
Can string kernels pass the test of time in Native Language Identification?
Radu Tudor Ionescu | Marius Popescu
Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications

We describe a machine learning approach for the 2017 shared task on Native Language Identification (NLI). The proposed approach combines several kernels using multiple kernel learning. While most of our kernels are based on character p-grams (also known as n-grams) extracted from essays or speech transcripts, we also use a kernel based on i-vectors, a low-dimensional representation of audio recordings, provided by the shared task organizers. For the learning stage, we choose Kernel Discriminant Analysis (KDA) over Kernel Ridge Regression (KRR), because the former classifier obtains better results than the latter one on the development set. In our previous work, we have used a similar machine learning approach to achieve state-of-the-art NLI results. The goal of this paper is to demonstrate that our shallow and simple approach based on string kernels (with minor improvements) can pass the test of time and reach state-of-the-art performance in the 2017 NLI shared task, despite the recent advances in natural language processing. We participated in all three tracks, in which the competitors were allowed to use only the essays (essay track), only the speech transcripts (speech track), or both (fusion track). Using only the data provided by the organizers for training our models, we have reached a macro F1 score of 86.95 % in the closed essay track, a macro F1 score of 87.55 % in the closed speech track, and a macro F1 score of 93.19 % in the closed fusion track.

pdf bib
ShotgunWSD : An unsupervised algorithm for global word sense disambiguation inspired by DNA sequencingShotgunWSD: An unsupervised algorithm for global word sense disambiguation inspired by DNA sequencing
Andrei Butnaru | Radu Tudor Ionescu | Florentina Hristea
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

In this paper, we present a novel unsupervised algorithm for word sense disambiguation (WSD) at the document level. Our algorithm is inspired by a widely-used approach in the field of genetics for whole genome sequencing, known as the Shotgun sequencing technique. The proposed WSD algorithm is based on three main steps. First, a brute-force WSD algorithm is applied to short context windows (up to 10 words) selected from the document in order to generate a short list of likely sense configurations for each window. In the second step, these local sense configurations are assembled into longer composite configurations based on suffix and prefix matching. The resulted configurations are ranked by their length, and the sense of each word is chosen based on a voting scheme that considers only the top k configurations in which the word appears. We compare our algorithm with other state-of-the-art unsupervised WSD algorithms and demonstrate better performance, sometimes by a very large margin. We also show that our algorithm can yield better performance than the Most Common Sense (MCS) baseline on one data set. Moreover, our algorithm has a very small number of parameters, is robust to parameter tuning, and, unlike other bio-inspired methods, it gives a deterministic solution (it does not involve random choices).