Rahul Aralikatte


2021

pdf bib
Itihasa : A large-scale corpus for Sanskrit to English translationSanskrit to English translation
Rahul Aralikatte | Miryam de Lhoneux | Anoop Kunchukuttan | Anders Søgaard
Proceedings of the 8th Workshop on Asian Translation (WAT2021)

This work introduces Itihasa, a large-scale translation dataset containing 93,000 pairs of Sanskrit shlokas and their English translations. The shlokas are extracted from two Indian epics viz., The Ramayana and The Mahabharata. We first describe the motivation behind the curation of such a dataset and follow up with empirical analysis to bring out its nuances. We then benchmark the performance of standard translation models on this corpus and show that even state-of-the-art transformer architectures perform poorly, emphasizing the complexity of the dataset.

pdf bib
How far can we get with one GPU in 100 hours? CoAStaL at MultiIndicMT Shared TaskGPU in 100 hours? CoAStaL at MultiIndicMT Shared Task
Rahul Aralikatte | Héctor Ricardo Murrieta Bello | Miryam de Lhoneux | Daniel Hershcovich | Marcel Bollmann | Anders Søgaard
Proceedings of the 8th Workshop on Asian Translation (WAT2021)

This work shows that competitive translation results can be obtained in a constrained setting by incorporating the latest advances in memory and compute optimization. We train and evaluate large multilingual translation models using a single GPU for a maximum of 100 hours and get within 4-5 BLEU points of the top submission on the leaderboard. We also benchmark standard baselines on the PMI corpus and re-discover well-known shortcomings of translation systems and metrics.

2020

pdf bib
Model-based Annotation of Coreference
Rahul Aralikatte | Anders Søgaard
Proceedings of the 12th Language Resources and Evaluation Conference

Humans do not make inferences over texts, but over models of what texts are about. When annotators are asked to annotate coreferent spans of text, it is therefore a somewhat unnatural task. This paper presents an alternative in which we preprocess documents, linking entities to a knowledge base, and turn the coreference annotation task in our case limited to pronouns into an annotation task where annotators are asked to assign pronouns to entities. Model-based annotation is shown to lead to faster annotation and higher inter-annotator agreement, and we argue that it also opens up an alternative approach to coreference resolution. We present two new coreference benchmark datasets, for English Wikipedia and English teacher-student dialogues, and evaluate state-of-the-art coreference resolvers on them.

2019

pdf bib
Rewarding Coreference Resolvers for Being Consistent with World Knowledge
Rahul Aralikatte | Heather Lent | Ana Valeria Gonzalez | Daniel Herschcovich | Chen Qiu | Anders Sandholm | Michael Ringaard | Anders Søgaard
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Unresolved coreference is a bottleneck for relation extraction, and high-quality coreference resolvers may produce an output that makes it a lot easier to extract knowledge triples. We show how to improve coreference resolvers by forwarding their input to a relation extraction system and reward the resolvers for producing triples that are found in knowledge bases. Since relation extraction systems can rely on different forms of supervision and be biased in different ways, we obtain the best performance, improving over the state of the art, using multi-task reinforcement learning.

pdf bib
X-WikiRE : A Large, Multilingual Resource for Relation Extraction as Machine ComprehensionX-WikiRE: A Large, Multilingual Resource for Relation Extraction as Machine Comprehension
Mostafa Abdou | Cezar Sas | Rahul Aralikatte | Isabelle Augenstein | Anders Søgaard
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)

Although the vast majority of knowledge bases (KBs) are heavily biased towards English, Wikipedias do cover very different topics in different languages. Exploiting this, we introduce a new multilingual dataset (X-WikiRE), framing relation extraction as a multilingual machine reading problem. We show that by leveraging this resource it is possible to robustly transfer models cross-lingually and that multilingual support significantly improves (zero-shot) relation extraction, enabling the population of low-resourced KBs from their well-populated counterparts.

pdf bib
Compositional Generalization in Image Captioning
Mitja Nikolaus | Mostafa Abdou | Matthew Lamm | Rahul Aralikatte | Desmond Elliott
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Image captioning models are usually evaluated on their ability to describe a held-out set of images, not on their ability to generalize to unseen concepts. We study the problem of compositional generalization, which measures how well a model composes unseen combinations of concepts when describing images. State-of-the-art image captioning models show poor generalization performance on this task. We propose a multi-task model to address the poor performance, that combines caption generation and imagesentence ranking, and uses a decoding mechanism that re-ranks the captions according their similarity to the image. This model is substantially better at generalizing to unseen combinations of concepts compared to state-of-the-art captioning models.

2018

pdf bib
Sanskrit Sandhi Splitting using seq2(seq)2Sanskrit Sandhi Splitting using seq2(seq)2
Rahul Aralikatte | Neelamadhav Gantayat | Naveen Panwar | Anush Sankaran | Senthil Mani
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In Sanskrit, small words (morphemes) are combined to form compound words through a process known as Sandhi. Sandhi splitting is the process of splitting a given compound word into its constituent morphemes. Although rules governing word splitting exists in the language, it is highly challenging to identify the location of the splits in a compound word. Though existing Sandhi splitting systems incorporate these pre-defined splitting rules, they have a low accuracy as the same compound word might be broken down in multiple ways to provide syntactically correct splits. In this research, we propose a novel deep learning architecture called Double Decoder RNN (DD-RNN), which (i) predicts the location of the split(s) with 95 % accuracy, and (ii) predicts the constituent words (learning the Sandhi splitting rules) with 79.5 % accuracy, outperforming the state-of-art by 20 %. Additionally, we show the generalization capability of our deep learning model, by showing competitive results in the problem of Chinese word segmentation, as well.

pdf bib
DuoRC : Towards Complex Language Understanding with Paraphrased Reading ComprehensionDuoRC: Towards Complex Language Understanding with Paraphrased Reading Comprehension
Amrita Saha | Rahul Aralikatte | Mitesh M. Khapra | Karthik Sankaranarayanan
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We propose DuoRC, a novel dataset for Reading Comprehension (RC) that motivates several new challenges for neural approaches in language understanding beyond those offered by existing RC datasets. DuoRC contains 186,089 unique question-answer pairs created from a collection of 7680 pairs of movie plots where each pair in the collection reflects two versions of the same movie-one from Wikipedia and the other from IMDb-written by two different authors. We asked crowdsourced workers to create questions from one version of the plot and a different set of workers to extract or synthesize answers from the other version. This unique characteristic of DuoRC where questions and answers are created from different versions of a document narrating the same underlying story, ensures by design, that there is very little lexical overlap between the questions created from one version and the segments containing the answer in the other version. Further, since the two versions have different levels of plot detail, narration style, vocabulary, etc., answering questions from the second version requires deeper language understanding and incorporating external background knowledge. Additionally, the narrative style of passages arising from movie plots (as opposed to typical descriptive passages in existing datasets) exhibits the need to perform complex reasoning over events across multiple sentences. Indeed, we observe that state-of-the-art neural RC models which have achieved near human performance on the SQuAD dataset, even when coupled with traditional NLP techniques to address the challenges presented in DuoRC exhibit very poor performance (F1 score of 37.42 % on DuoRC v / s 86 % on SQuAD dataset).