Sabrina J. Mielke


2020

pdf bib
Processing South Asian Languages Written in the Latin Script : the Dakshina DatasetSouth Asian Languages Written in the Latin Script: the Dakshina Dataset
Brian Roark | Lawrence Wolf-Sonkin | Christo Kirov | Sabrina J. Mielke | Cibu Johny | Isin Demirsahin | Keith Hall
Proceedings of the 12th Language Resources and Evaluation Conference

This paper describes the Dakshina dataset, a new resource consisting of text in both the Latin and native scripts for 12 South Asian languages. The dataset includes, for each language : 1) native script Wikipedia text ; 2) a romanization lexicon ; and 3) full sentence parallel data in both a native script of the language and the basic Latin alphabet. We document the methods used for preparation and selection of the Wikipedia text in each language ; collection of attested romanizations for sampled lexicons ; and manual romanization of held-out sentences from the native script collections. We additionally provide baseline results on several tasks made possible by the dataset, including single word transliteration, full sentence transliteration, and language modeling of native script and romanized text.

pdf bib
SIGTYP 2020 Shared Task : Prediction of Typological FeaturesSIGTYP 2020 Shared Task: Prediction of Typological Features
Johannes Bjerva | Elizabeth Salesky | Sabrina J. Mielke | Aditi Chaudhary | Giuseppe G. A. Celano | Edoardo Maria Ponti | Ekaterina Vylomova | Ryan Cotterell | Isabelle Augenstein
Proceedings of the Second Workshop on Computational Research in Linguistic Typology

Typological knowledge bases (KBs) such as WALS (Dryer and Haspelmath, 2013) contain information about linguistic properties of the world’s languages. They have been shown to be useful for downstream applications, including cross-lingual transfer learning and linguistic probing. A major drawback hampering broader adoption of typological KBs is that they are sparsely populated, in the sense that most languages only have annotations for some features, and skewed, in that few features have wide coverage. As typological features often correlate with one another, it is possible to predict them and thus automatically populate typological KBs, which is also the focus of this shared task. Overall, the task attracted 8 submissions from 5 teams, out of which the most successful methods make use of such feature correlations. However, our error analysis reveals that even the strongest submitted systems struggle with predicting feature values for languages where few features are known.

2019

pdf bib
The SIGMORPHON 2019 Shared Task : Morphological Analysis in Context and Cross-Lingual Transfer for InflectionSIGMORPHON 2019 Shared Task: Morphological Analysis in Context and Cross-Lingual Transfer for Inflection
Arya D. McCarthy | Ekaterina Vylomova | Shijie Wu | Chaitanya Malaviya | Lawrence Wolf-Sonkin | Garrett Nicolai | Christo Kirov | Miikka Silfverberg | Sabrina J. Mielke | Jeffrey Heinz | Ryan Cotterell | Mans Hulden
Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology

The SIGMORPHON 2019 shared task on cross-lingual transfer and contextual analysis in morphology examined transfer learning of inflection between 100 language pairs, as well as contextual lemmatization and morphosyntactic description in 66 languages. The first task evolves past years’ inflection tasks by examining transfer of morphological inflection knowledge from a high-resource language to a low-resource language. This year also presents a new second challenge on lemmatization and morphological feature analysis in context. All submissions featured a neural component and built on either this year’s strong baselines or highly ranked systems from previous years’ shared tasks. Every participating team improved in accuracy over the baselines for the inflection task (though not Levenshtein distance), and every team in the contextual analysis task improved on both state-of-the-art neural and non-neural baselines.

2018

pdf bib
A Structured Variational Autoencoder for Contextual Morphological Inflection
Lawrence Wolf-Sonkin | Jason Naradowsky | Sabrina J. Mielke | Ryan Cotterell
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Statistical morphological inflectors are typically trained on fully supervised, type-level data. One remaining open research question is the following : How can we effectively exploit raw, token-level data to improve their performance? To this end, we introduce a novel generative latent-variable model for the semi-supervised learning of inflection generation. To enable posterior inference over the latent variables, we derive an efficient variational inference procedure based on the wake-sleep algorithm. We experiment on 23 languages, using the Universal Dependencies corpora in a simulated low-resource setting, and find improvements of over 10 % absolute accuracy in some cases.