Santiago Castro


2022

pdf bib
FIBER: Fill-in-the-Blanks as a Challenging Video Understanding Evaluation Framework
Santiago Castro | Ruoyao Wang | Pingxuan Huang | Ian Stewart | Oana Ignat | Nan Liu | Jonathan Stroud | Rada Mihalcea
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We propose fill-in-the-blanks as a video understanding evaluation framework and introduce FIBER – a novel dataset consisting of 28,000 videos and descriptions in support of this evaluation framework. The fill-in-the-blanks setting tests a model’s understanding of a video by requiring it to predict a masked noun phrase in the caption of the video, given the video and the surrounding text. The FIBER benchmark does not share the weaknesses of the current state-of-the-art language-informed video understanding tasks, namely: (1) video question answering using multiple-choice questions, where models perform relatively well because they exploit linguistic biases in the task formulation, thus making our framework challenging for the current state-of-the-art systems to solve; and (2) video captioning, which relies on an open-ended evaluation framework that is often inaccurate because system answers may be perceived as incorrect if they differ in form from the ground truth. The FIBER dataset and our code are available at https://lit.eecs.umich.edu/fiber/.

2019

pdf bib
Towards Multimodal Sarcasm Detection (An _ Obviously _ Perfect Paper)Obviously_ Perfect Paper)
Santiago Castro | Devamanyu Hazarika | Verónica Pérez-Rosas | Roger Zimmermann | Rada Mihalcea | Soujanya Poria
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Sarcasm is often expressed through several verbal and non-verbal cues, e.g., a change of tone, overemphasis in a word, a drawn-out syllable, or a straight looking face. Most of the recent work in sarcasm detection has been carried out on textual data. In this paper, we argue that incorporating multimodal cues can improve the automatic classification of sarcasm. As a first step towards enabling the development of multimodal approaches for sarcasm detection, we propose a new sarcasm dataset, Multimodal Sarcasm Detection Dataset (MUStARD), compiled from popular TV shows. MUStARD consists of audiovisual utterances annotated with sarcasm labels. Each utterance is accompanied by its context of historical utterances in the dialogue, which provides additional information on the scenario where the utterance occurs. Our initial results show that the use of multimodal information can reduce the relative error rate of sarcasm detection by up to 12.9 % in F-score when compared to the use of individual modalities. The full dataset is publicly available for use at https://github.com/soujanyaporia/MUStARD.

2018

pdf bib
A High Coverage Method for Automatic False Friends Detection for Spanish and PortugueseFriends Detection for Spanish and Portuguese
Santiago Castro | Jairo Bonanata | Aiala Rosá
Proceedings of the Fifth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2018)

False friends are words in two languages that look or sound similar, but have different meanings. They are a common source of confusion among language learners. Methods to detect them automatically do exist, however they make use of large aligned bilingual corpora, which are hard to find and expensive to build, or encounter problems dealing with infrequent words. In this work we propose a high coverage method that uses word vector representations to build a false friends classifier for any pair of languages, which we apply to the particular case of Spanish and Portuguese. The required resources are a large corpus for each language and a small bilingual lexicon for the pair.