Sheng Gao


2021

pdf bib
A Joint Model for Dropped Pronoun Recovery and Conversational Discourse Parsing in Chinese Conversational SpeechChinese Conversational Speech
Jingxuan Yang | Kerui Xu | Jun Xu | Si Li | Sheng Gao | Jun Guo | Nianwen Xue | Ji-Rong Wen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In this paper, we present a neural model for joint dropped pronoun recovery (DPR) and conversational discourse parsing (CDP) in Chinese conversational speech. We show that DPR and CDP are closely related, and a joint model benefits both tasks. We refer to our model as DiscProReco, and it first encodes the tokens in each utterance in a conversation with a directed Graph Convolutional Network (GCN). The token states for an utterance are then aggregated to produce a single state for each utterance. The utterance states are then fed into a biaffine classifier to construct a conversational discourse graph. A second (multi-relational) GCN is then applied to the utterance states to produce a discourse relation-augmented representation for the utterances, which are then fused together with token states in each utterance as input to a dropped pronoun recovery layer. The joint model is trained and evaluated on a new Structure Parsing-enhanced Dropped Pronoun Recovery (SPDPR) data set that we annotated with both two types of information. Experimental results on the SPDPR dataset and other benchmarks show that DiscProReco significantly outperforms the state-of-the-art baselines of both tasks.

2019

pdf bib
Recovering dropped pronouns in Chinese conversations via modeling their referentsChinese conversations via modeling their referents
Jingxuan Yang | Jianzhuo Tong | Si Li | Sheng Gao | Jun Guo | Nianwen Xue
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Pronouns are often dropped in Chinese sentences, and this happens more frequently in conversational genres as their referents can be easily understood from context. Recovering dropped pronouns is essential to applications such as Information Extraction where the referents of these dropped pronouns need to be resolved, or Machine Translation when Chinese is the source language. In this work, we present a novel end-to-end neural network model to recover dropped pronouns in conversational data. Our model is based on a structured attention mechanism that models the referents of dropped pronouns utilizing both sentence-level and word-level information. Results on three different conversational genres show that our approach achieves a significant improvement over the current state of the art.

pdf bib
A Prism Module for Semantic Disentanglement in Name Entity Recognition
Kun Liu | Shen Li | Daqi Zheng | Zhengdong Lu | Sheng Gao | Si Li
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Natural Language Processing has been perplexed for many years by the problem that multiple semantics are mixed inside a word, even with the help of context. To solve this problem, we propose a prism module to disentangle the semantic aspects of words and reduce noise at the input layer of a model. In the prism module, some words are selectively replaced with task-related semantic aspects, then these denoised word representations can be fed into downstream tasks to make them easier. Besides, we also introduce a structure to train this module jointly with the downstream model without additional data. This module can be easily integrated into the downstream model and significantly improve the performance of baselines on named entity recognition (NER) task. The ablation analysis demonstrates the rationality of the method. As a side effect, the proposed method also provides a way to visualize the contribution of each word.

2017

pdf bib
Neural Regularized Domain Adaptation for Chinese Word SegmentationChinese Word Segmentation
Zuyi Bao | Si Li | Weiran Xu | Sheng Gao
Proceedings of the 9th SIGHAN Workshop on Chinese Language Processing

For Chinese word segmentation, the large-scale annotated corpora mainly focus on newswire and only a handful of annotated data is available in other domains such as patents and literature. Considering the limited amount of annotated target domain data, it is a challenge for segmenters to learn domain-specific information while avoid getting over-fitted at the same time. In this paper, we propose a neural regularized domain adaptation method for Chinese word segmentation. The teacher networks trained in source domain are employed to regularize the training process of the student network by preserving the general knowledge. In the experiments, our neural regularized domain adaptation method achieves a better performance comparing to previous methods.