Sheng Zhang


2020

pdf bib
Universal Decompositional Semantic Parsing
Elias Stengel-Eskin | Aaron Steven White | Sheng Zhang | Benjamin Van Durme
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We introduce a transductive model for parsing into Universal Decompositional Semantics (UDS) representations, which jointly learns to map natural language utterances into UDS graph structures and annotate the graph with decompositional semantic attribute scores. We also introduce a strong pipeline model for parsing into the UDS graph structure, and show that our transductive parser performs comparably while additionally performing attribute prediction. By analyzing the attribute prediction errors, we find the model captures natural relationships between attribute groups.

pdf bib
The Universal Decompositional Semantics Dataset and Decomp Toolkit
Aaron Steven White | Elias Stengel-Eskin | Siddharth Vashishtha | Venkata Subrahmanyan Govindarajan | Dee Ann Reisinger | Tim Vieira | Keisuke Sakaguchi | Sheng Zhang | Francis Ferraro | Rachel Rudinger | Kyle Rawlins | Benjamin Van Durme
Proceedings of the 12th Language Resources and Evaluation Conference

We present the Universal Decompositional Semantics (UDS) dataset (v1.0), which is bundled with the Decomp toolkit (v0.1). UDS1.0 unifies five high-quality, decompositional semantics-aligned annotation sets within a single semantic graph specificationwith graph structures defined by the predicative patterns produced by the PredPatt tool and real-valued node and edge attributes constructed using sophisticated normalization procedures. The Decomp toolkit provides a suite of Python 3 tools for querying UDS graphs using SPARQL. Both UDS1.0 and Decomp0.1 are publicly available at http://decomp.io.

2019

pdf bib
Broad-Coverage Semantic Parsing as Transduction
Sheng Zhang | Xutai Ma | Kevin Duh | Benjamin Van Durme
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We unify different broad-coverage semantic parsing tasks into a transduction parsing paradigm, and propose an attention-based neural transducer that incrementally builds meaning representation via a sequence of semantic relations. By leveraging multiple attention mechanisms, the neural transducer can be effectively trained without relying on a pre-trained aligner. Experiments separately conducted on three broad-coverage semantic parsing tasks AMR, SDP and UCCA demonstrate that our attention-based neural transducer improves the state of the art on both AMR and UCCA, and is competitive with the state of the art on SDP.

pdf bib
Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing
Simon Ostermann | Sheng Zhang | Michael Roth | Peter Clark
Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing

pdf bib
Deep Generalized Canonical Correlation Analysis
Adrian Benton | Huda Khayrallah | Biman Gujral | Dee Ann Reisinger | Sheng Zhang | Raman Arora
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

We present Deep Generalized Canonical Correlation Analysis (DGCCA) a method for learning nonlinear transformations of arbitrarily many views of data, such that the resulting transformations are maximally informative of each other. While methods for nonlinear two view representation learning (Deep CCA, (Andrew et al., 2013)) and linear many-view representation learning (Generalized CCA (Horst, 1961)) exist, DGCCA combines the flexibility of nonlinear (deep) representation learning with the statistical power of incorporating information from many sources, or views. We present the DGCCA formulation as well as an efficient stochastic optimization algorithm for solving it. We learn and evaluate DGCCA representations for three downstream tasks : phonetic transcription from acoustic & articulatory measurements, recommending hashtags and recommending friends on a dataset of Twitter users.

pdf bib
AMR Parsing as Sequence-to-Graph TransductionAMR Parsing as Sequence-to-Graph Transduction
Sheng Zhang | Xutai Ma | Kevin Duh | Benjamin Van Durme
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We propose an attention-based model that treats AMR parsing as sequence-to-graph transduction. Unlike most AMR parsers that rely on pre-trained aligners, external semantic resources, or data augmentation, our proposed parser is aligner-free, and it can be effectively trained with limited amounts of labeled AMR data. Our experimental results outperform all previously reported SMATCH scores, on both AMR 2.0 (76.3 % on LDC2017T10) and AMR 1.0 (70.2 % on LDC2014T12).

2018

pdf bib
Halo : Learning Semantics-Aware Representations for Cross-Lingual Information ExtractionHalo: Learning Semantics-Aware Representations for Cross-Lingual Information Extraction
Hongyuan Mei | Sheng Zhang | Kevin Duh | Benjamin Van Durme
Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics

Cross-lingual information extraction (CLIE) is an important and challenging task, especially in low resource scenarios. To tackle this challenge, we propose a training method, called Halo, which enforces the local region of each hidden state of a neural model to only generate target tokens with the same semantic structure tag. This simple but powerful technique enables a neural model to learn semantics-aware representations that are robust to noise, without introducing any extra parameter, thus yielding better generalization in both high and low resource settings.Halo, which enforces the local region of each hidden state of a neural model\n to only generate target tokens with the same semantic structure tag. This\n simple but powerful technique enables a neural model to learn\n semantics-aware representations that are robust to noise, without\n introducing any extra parameter, thus yielding better generalization in\n both high and low resource settings.\n

2017

pdf bib
Selective Decoding for Cross-lingual Open Information Extraction
Sheng Zhang | Kevin Duh | Benjamin Van Durme
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Cross-lingual open information extraction is the task of distilling facts from the source language into representations in the target language. We propose a novel encoder-decoder model for this problem. It employs a novel selective decoding mechanism, which explicitly models the sequence labeling process as well as the sequence generation process on the decoder side. Compared to a standard encoder-decoder model, selective decoding significantly increases the performance on a Chinese-English cross-lingual open IE dataset by 3.87-4.49 BLEU and 1.91-5.92 F1. We also extend our approach to low-resource scenarios, and gain promising improvement.

pdf bib
Ordinal Common-sense Inference
Sheng Zhang | Rachel Rudinger | Kevin Duh | Benjamin Van Durme
Transactions of the Association for Computational Linguistics, Volume 5

Humans have the capacity to draw common-sense inferences from natural language : various things that are likely but not certain to hold based on established discourse, and are rarely stated explicitly. We propose an evaluation of automated common-sense inference based on an extension of recognizing textual entailment : predicting ordinal human responses on the subjective likelihood of an inference holding in a given context. We describe a framework for extracting common-sense knowledge from corpora, which is then used to construct a dataset for this ordinal entailment task. We train a neural sequence-to-sequence model on this dataset, which we use to score and generate possible inferences. Further, we annotate subsets of previously established datasets via our ordinal annotation protocol in order to then analyze the distinctions between these and what we have constructed.

pdf bib
FuRongWang at SemEval-2017 Task 3 : Deep Neural Networks for Selecting Relevant Answers in Community Question AnsweringFuRongWang at SemEval-2017 Task 3: Deep Neural Networks for Selecting Relevant Answers in Community Question Answering
Sheng Zhang | Jiajun Cheng | Hui Wang | Xin Zhang | Pei Li | Zhaoyun Ding
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

We describes deep neural networks frameworks in this paper to address the community question answering (cQA) ranking task (SemEval-2017 task 3). Convolutional neural networks and bi-directional long-short term memory networks are applied in our methods to extract semantic information from questions and answers (comments). In addition, in order to take the full advantage of question-comment semantic relevance, we deploy interaction layer and augmented features before calculating the similarity. The results show that our methods have the great effectiveness for both subtask A and subtask C.

pdf bib
MT / IE : Cross-lingual Open Information Extraction with Neural Sequence-to-Sequence ModelsMT/IE: Cross-lingual Open Information Extraction with Neural Sequence-to-Sequence Models
Sheng Zhang | Kevin Duh | Benjamin Van Durme
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

Cross-lingual information extraction is the task of distilling facts from foreign language (e.g. Chinese text) into representations in another language that is preferred by the user (e.g. English tuples). Conventional pipeline solutions decompose the task as machine translation followed by information extraction (or vice versa). We propose a joint solution with a neural sequence model, and show that it outperforms the pipeline in a cross-lingual open information extraction setting by 1-4 BLEU and 0.5-0.8 F1.