Shiyue Zhang


2021

pdf bib
Finding a Balanced Degree of Automation for Summary Evaluation
Shiyue Zhang | Mohit Bansal
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Human evaluation for summarization tasks is reliable but brings in issues of reproducibility and high costs. Automatic metrics are cheap and reproducible but sometimes poorly correlated with human judgment. In this work, we propose flexible semiautomatic to automatic summary evaluation metrics, following the Pyramid human evaluation method. Semi-automatic Lite2Pyramid retains the reusable human-labeled Summary Content Units (SCUs) for reference(s) but replaces the manual work of judging SCUs’ presence in system summaries with a natural language inference (NLI) model. Fully automatic Lite3Pyramid further substitutes SCUs with automatically extracted Semantic Triplet Units (STUs) via a semantic role labeling (SRL) model. Finally, we propose in-between metrics, Lite2.xPyramid, where we use a simple regressor to predict how well the STUs can simulate SCUs and retain SCUs that are more difficult to simulate, which provides a smooth transition and balance between automation and manual evaluation. Comparing to 15 existing metrics, we evaluate human-metric correlations on 3 existing meta-evaluation datasets and our newly collected PyrXSum (with 100/10 XSum examples / systems). It shows that Lite2Pyramid consistently has the best summary-level correlations ; Lite3Pyramid works better than or comparable to other automatic metrics ; Lite2.xPyramid trades off small correlation drops for larger manual effort reduction, which can reduce costs for future data collection.

2020

pdf bib
Leakage-Adjusted Simulatability : Can Models Generate Non-Trivial Explanations of Their Behavior in Natural Language?
Peter Hase | Shiyue Zhang | Harry Xie | Mohit Bansal
Findings of the Association for Computational Linguistics: EMNLP 2020

Data collection for natural language (NL) understanding tasks has increasingly included human explanations alongside data points, allowing past works to introduce models that both perform a task and generate NL explanations for their outputs. Yet to date, model-generated explanations have been evaluated on the basis of surface-level similarities to human explanations, both through automatic metrics like BLEU and human evaluations. We argue that these evaluations are insufficient, since they fail to indicate whether explanations support actual model behavior (faithfulness), rather than simply match what a human would say (plausibility). In this work, we address the problem of evaluating explanations from the the model simulatability perspective. Our contributions are as follows : (1) We introduce a leakage-adjusted simulatability (LAS) metric for evaluating NL explanations, which measures how well explanations help an observer predict a model’s output, while controlling for how explanations can directly leak the output. We use a model as a proxy for a human observer, and validate this choice with two human subject experiments. (2) Using the CoS-E and e-SNLI datasets, we evaluate two existing generative graphical models and two new approaches ; one rationalizing method we introduce achieves roughly human-level LAS scores. (3) Lastly, we frame explanation generation as a multi-agent game and optimize explanations for simulatability while penalizing label leakage, which can improve LAS scores.

2019

pdf bib
Addressing Semantic Drift in Question Generation for Semi-Supervised Question Answering
Shiyue Zhang | Mohit Bansal
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Text-based Question Generation (QG) aims at generating natural and relevant questions that can be answered by a given answer in some context. Existing QG models suffer from a semantic drift problem, i.e., the semantics of the model-generated question drifts away from the given context and answer. In this paper, we first propose two semantics-enhanced rewards obtained from downstream question paraphrasing and question answering tasks to regularize the QG model to generate semantically valid questions. Second, since the traditional evaluation metrics (e.g., BLEU) often fall short in evaluating the quality of generated questions, we propose a QA-based evaluation method which measures the QG model’s ability to mimic human annotators in generating QA training data. Experiments show that our method achieves the new state-of-the-art performance w.r.t. traditional metrics, and also performs best on our QA-based evaluation metrics. Further, we investigate how to use our QG model to augment QA datasets and enable semi-supervised QA. We propose two ways to generate synthetic QA pairs : generate new questions from existing articles or collect QA pairs from new articles. We also propose two empirically effective strategies, a data filter and mixing mini-batch training, to properly use the QG-generated data for QA. Experiments show that our method improves over both BiDAF and BERT QA baselines, even without introducing new articles.

2017

pdf bib
Memory-augmented Neural Machine Translation
Yang Feng | Shiyue Zhang | Andi Zhang | Dong Wang | Andrew Abel
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Neural machine translation (NMT) has achieved notable success in recent times, however it is also widely recognized that this approach has limitations with handling infrequent words and word pairs. This paper presents a novel memory-augmented NMT (M-NMT) architecture, which stores knowledge about how words (usually infrequently encountered ones) should be translated in a memory and then utilizes them to assist the neural model. We use this memory mechanism to combine the knowledge learned from a conventional statistical machine translation system and the rules learned by an NMT system, and also propose a solution for out-of-vocabulary (OOV) words based on this framework. Our experiments on two Chinese-English translation tasks demonstrated that the M-NMT architecture outperformed the NMT baseline by 9.0 and 2.7 BLEU points on the two tasks, respectively. Additionally, we found this architecture resulted in a much more effective OOV treatment compared to competitive methods.