Stephen Mayhew


2021

pdf bib
Building Low-Resource NER Models Using Non-Speaker AnnotationsNER Models Using Non-Speaker Annotations
Tatiana Tsygankova | Francesca Marini | Stephen Mayhew | Dan Roth
Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances

In low-resource natural language processing (NLP), the key problems are a lack of target language training data, and a lack of native speakers to create it. Cross-lingual methods have had notable success in addressing these concerns, but in certain common circumstances, such as insufficient pre-training corpora or languages far from the source language, their performance suffers. In this work we propose a complementary approach to building low-resource Named Entity Recognition (NER) models using non-speaker (NS) annotations, provided by annotators with no prior experience in the target language. We recruit 30 participants in a carefully controlled annotation experiment with Indonesian, Russian, and Hindi. We show that use of NS annotators produces results that are consistently on par or better than cross-lingual methods built on modern contextual representations, and have the potential to outperform with additional effort. We conclude with observations of common annotation patterns and recommended implementation practices, and motivate how NS annotations can be used in addition to prior methods for improved performance.

2019

pdf bib
ner and pos when nothing is capitalizedner and pos when nothing is capitalized
Stephen Mayhew | Tatiana Tsygankova | Dan Roth
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

For those languages which use it, capitalization is an important signal for the fundamental NLP tasks of Named Entity Recognition (NER) and Part of Speech (POS) tagging. In fact, it is such a strong signal that model performance on these tasks drops sharply in common lowercased scenarios, such as noisy web text or machine translation outputs. In this work, we perform a systematic analysis of solutions to this problem, modifying only the casing of the train or test data using lowercasing and truecasing methods. While prior work and first impressions might suggest training a caseless model, or using a truecaser at test time, we show that the most effective strategy is a concatenation of cased and lowercased training data, producing a single model with high performance on both cased and uncased text. As shown in our experiments, this result holds across tasks and input representations. Finally, we show that our proposed solution gives an 8 % F1 improvement in mention detection on noisy out-of-domain Twitter data.

pdf bib
Named Entity Recognition with Partially Annotated Training Data
Stephen Mayhew | Snigdha Chaturvedi | Chen-Tse Tsai | Dan Roth
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Supervised machine learning assumes the availability of fully-labeled data, but in many cases, such as low-resource languages, the only data available is partially annotated. We study the problem of Named Entity Recognition (NER) with partially annotated training data in which a fraction of the named entities are labeled, and all other tokens, entities or otherwise, are labeled as non-entity by default. In order to train on this noisy dataset, we need to distinguish between the true and false negatives. To this end, we introduce a constraint-driven iterative algorithm that learns to detect false negatives in the noisy set and downweigh them, resulting in a weighted training set. With this set, we train a weighted NER model. We evaluate our algorithm with weighted variants of neural and non-neural NER models on data in 8 languages from several language and script families, showing strong ability to learn from partial data. Finally, to show real-world efficacy, we evaluate on a Bengali NER corpus annotated by non-speakers, outperforming the prior state-of-the-art by over 5 points F1.

2018

pdf bib
Simple Features for Strong Performance on Named Entity Recognition in Code-Switched Twitter DataTwitter Data
Devanshu Jain | Maria Kustikova | Mayank Darbari | Rishabh Gupta | Stephen Mayhew
Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching

In this work, we address the problem of Named Entity Recognition (NER) in code-switched tweets as a part of the Workshop on Computational Approaches to Linguistic Code-switching (CALCS) at ACL’18. Code-switching is the phenomenon where a speaker switches between two languages or variants of the same language within or across utterances, known as intra-sentential or inter-sentential code-switching, respectively. Processing such data is challenging using state of the art methods since such technology is generally geared towards processing monolingual text. In this paper we explored ways to use language identification and translation to recognize named entities in such data, however, utilizing simple features (sans multi-lingual features) with Conditional Random Field (CRF) classifier achieved the best results. Our experiments were mainly aimed at the (ENG-SPA) English-Spanish dataset but we submitted a language-independent version of our system to the (MSA-EGY) Arabic-Egyptian dataset as well and achieved good results.

2017

pdf bib
Cheap Translation for Cross-Lingual Named Entity Recognition
Stephen Mayhew | Chen-Tse Tsai | Dan Roth
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Recent work in NLP has attempted to deal with low-resource languages but still assumed a resource level that is not present for most languages, e.g., the availability of Wikipedia in the target language. We propose a simple method for cross-lingual named entity recognition (NER) that works well in settings with very minimal resources. Our approach makes use of a lexicon to translate annotated data available in one or several high resource language(s) into the target language, and learns a standard monolingual NER model there. Further, when Wikipedia is available in the target language, our method can enhance Wikipedia based methods to yield state-of-the-art NER results ; we evaluate on 7 diverse languages, improving the state-of-the-art by an average of 5.5 % F1 points. With the minimal resources required, this is an extremely portable cross-lingual NER approach, as illustrated using a truly low-resource language, Uyghur.very minimal resources. Our approach makes use of a lexicon to “translate” annotated data available in one or several high resource language(s) into the target language, and learns a standard monolingual NER model there. Further, when Wikipedia is available in the target language, our method can enhance Wikipedia based methods to yield state-of-the-art NER results; we evaluate on 7 diverse languages, improving the state-of-the-art by an average of 5.5% F1 points. With the minimal resources required, this is an extremely portable cross-lingual NER approach, as illustrated using a truly low-resource language, Uyghur.