Steven Skiena

Also published as: Steve Skiena


pdf bib
The Trumpiest Trump? Identifying a Subject’s Most Characteristic Tweets
Charuta Pethe | Steve Skiena
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The sequence of documents produced by any given author varies in style and content, but some documents are more typical or representative of the source than others. We quantify the extent to which a given short text is characteristic of a specific person, using a dataset of tweets from fifteen celebrities. Such analysis is useful for generating excerpts of high-volume Twitter profiles, and understanding how representativeness relates to tweet popularity. We first consider the related task of binary author detection (is x the author of text T?), and report a test accuracy of 90.37 % for the best of five approaches to this problem. We then use these models to compute characterization scores among all of an author’s texts. A user study shows human evaluators agree with our characterization model for all 15 celebrities in our dataset, each with p-value 0.05. We use these classifiers to show surprisingly strong correlations between characterization scores and the popularity of the associated texts. Indeed, we demonstrate a statistically significant correlation between this score and tweet popularity (likes / replies / retweets) for 13 of the 15 celebrities in our study.

pdf bib
Learning to Represent Bilingual Dictionaries
Muhao Chen | Yingtao Tian | Haochen Chen | Kai-Wei Chang | Steven Skiena | Carlo Zaniolo
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Bilingual word embeddings have been widely used to capture the correspondence of lexical semantics in different human languages. However, the cross-lingual correspondence between sentences and words is less studied, despite that this correspondence can significantly benefit many applications such as crosslingual semantic search and textual inference. To bridge this gap, we propose a neural embedding model that leverages bilingual dictionaries. The proposed model is trained to map the lexical definitions to the cross-lingual target words, for which we explore with different sentence encoding techniques. To enhance the learning process on limited resources, our model adopts several critical learning strategies, including multi-task learning on different bridges of languages, and joint learning of the dictionary model with a bilingual word embedding model. We conduct experiments on two new tasks. In the cross-lingual reverse dictionary retrieval task, we demonstrate that our model is capable of comprehending bilingual concepts based on descriptions, and the proposed learning strategies are effective. In the bilingual paraphrase identification task, we show that our model effectively associates sentences in different languages via a shared embedding space, and outperforms existing approaches in identifying bilingual paraphrases.


pdf bib
Multi-view Models for Political Ideology Detection of News Articles
Vivek Kulkarni | Junting Ye | Steve Skiena | William Yang Wang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

A news article’s title, content and link structure often reveal its political ideology. However, most existing works on automatic political ideology detection only leverage textual cues. Drawing inspiration from recent advances in neural inference, we propose a novel attention based multi-view model to leverage cues from all of the above views to identify the ideology evinced by a news article. Our model draws on advances in representation learning in natural language processing and network science to capture cues from both textual content and the network structure of news articles. We empirically evaluate our model against a battery of baselines and show that our model outperforms state of the art by 10 percentage points F1 score.