Yanlin Feng


2019

pdf bib
Towards a Unified End-to-End Approach for Fully Unsupervised Cross-Lingual Sentiment Analysis
Yanlin Feng | Xiaojun Wan
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Sentiment analysis in low-resource languages suffers from the lack of training data. Cross-lingual sentiment analysis (CLSA) aims to improve the performance on these languages by leveraging annotated data from other languages. Recent studies have shown that CLSA can be performed in a fully unsupervised manner, without exploiting either target language supervision or cross-lingual supervision. However, these methods rely heavily on unsupervised cross-lingual word embeddings (CLWE), which has been shown to have serious drawbacks on distant language pairs (e.g. English-Japanese). In this paper, we propose an end-to-end CLSA model by leveraging unlabeled data in multiple languages and multiple domains and eliminate the need for unsupervised CLWE. Our model applies to two CLSA settings : the traditional cross-lingual in-domain setting and the more challenging cross-lingual cross-domain setting. We empirically evaluate our approach on the multilingual multi-domain Amazon review dataset. Experimental results show that our model outperforms the baselines by a large margin despite its minimal resource requirement.
Search
Co-authors
Venues