Zeming Chen


2021

pdf bib
Attentive Tree-structured Network for Monotonicity Reasoning
Zeming Chen
Proceedings of the 1st and 2nd Workshops on Natural Logic Meets Machine Learning (NALOMA)

Many state-of-art neural models designed for monotonicity reasoning perform poorly on downward inference. To address this shortcoming, we developed an attentive tree-structured neural network. It consists of a tree-based long-short-term-memory network (Tree-LSTM) with soft attention. It is designed to model the syntactic parse tree information from the sentence pair of a reasoning task. A self-attentive aggregator is used for aligning the representations of the premise and the hypothesis. We present our model and evaluate it using the Monotonicity Entailment Dataset (MED). We show and attempt to explain that our model outperforms existing models on MED.

pdf bib
Monotonicity Marking from Universal Dependency TreesUniversal Dependency Trees
Zeming Chen | Qiyue Gao
Proceedings of the 14th International Conference on Computational Semantics (IWCS)

Dependency parsing is a tool widely used in the field of Natural language processing and computational linguistics. However, there is hardly any work that connects dependency parsing to monotonicity, which is an essential part of logic and linguistic semantics. In this paper, we present a system that automatically annotates monotonicity information based on Universal Dependency parse trees. Our system utilizes surface-level monotonicity facts about quantifiers, lexical items, and token-level polarity information. We compared our system’s performance with existing systems in the literature, including NatLog and ccg2mono, on a small evaluation dataset. Results show that our system outperforms NatLog and ccg2mono.
Search
Co-authors
Venues