Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop

Ionut-Teodor Sorodoc, Madhumita Sushil, Ece Takmaz, Eneko Agirre (Editors)


Anthology ID:
2021.eacl-srw
Month:
April
Year:
2021
Address:
Online
Venue:
EACL
SIG:
Publisher:
Association for Computational Linguistics
URL:
https://aclanthology.org/2021.eacl-srw
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop
Ionut-Teodor Sorodoc | Madhumita Sushil | Ece Takmaz | Eneko Agirre

pdf bib
Computationally Efficient Wasserstein Loss for Structured LabelsWasserstein Loss for Structured Labels
Ayato Toyokuni | Sho Yokoi | Hisashi Kashima | Makoto Yamada

The problem of estimating the probability distribution of labels has been widely studied as a label distribution learning (LDL) problem, whose applications include age estimation, emotion analysis, and semantic segmentation. We propose a tree-Wasserstein distance regularized LDL algorithm, focusing on hierarchical text classification tasks. We propose predicting the entire label hierarchy using neural networks, where the similarity between predicted and true labels is measured using the tree-Wasserstein distance. Through experiments using synthetic and real-world datasets, we demonstrate that the proposed method successfully considers the structure of labels during training, and it compares favorably with the Sinkhorn algorithm in terms of computation time and memory usage.

pdf bib
Have Attention Heads in BERT Learned Constituency Grammar?BERT Learned Constituency Grammar?
Ziyang Luo

With the success of pre-trained language models in recent years, more and more researchers focus on opening the black box of these models. Following this interest, we carry out a qualitative and quantitative analysis of constituency grammar in attention heads of BERT and RoBERTa. We employ the syntactic distance method to extract implicit constituency grammar from the attention weights of each head. Our results show that there exist heads that can induce some grammar types much better than baselines, suggesting that some heads act as a proxy for constituency grammar. We also analyze how attention heads’ constituency grammar inducing (CGI) ability changes after fine-tuning with two kinds of tasks, including sentence meaning similarity (SMS) tasks and natural language inference (NLI) tasks. Our results suggest that SMS tasks decrease the average CGI ability of upper layers, while NLI tasks increase it. Lastly, we investigate the connections between CGI ability and natural language understanding ability on QQP and MNLI tasks.

pdf bib
Do we read what we hear? Modeling orthographic influences on spoken word recognition
Nicole Macher | Badr M. Abdullah | Harm Brouwer | Dietrich Klakow

Theories and models of spoken word recognition aim to explain the process of accessing lexical knowledge given an acoustic realization of a word form. There is consensus that phonological and semantic information is crucial for this process. However, there is accumulating evidence that orthographic information could also have an impact on auditory word recognition. This paper presents two models of spoken word recognition that instantiate different hypotheses regarding the influence of orthography on this process. We show that these models reproduce human-like behavior in different ways and provide testable hypotheses for future research on the source of orthographic effects in spoken word recognition.

pdf bib
Automatically Cataloging Scholarly Articles using Library of Congress Subject Headings
Nazmul Kazi | Nathaniel Lane | Indika Kahanda

Institutes are required to catalog their articles with proper subject headings so that the users can easily retrieve relevant articles from the institutional repositories. However, due to the rate of proliferation of the number of articles in these repositories, it is becoming a challenge to manually catalog the newly added articles at the same pace. To address this challenge, we explore the feasibility of automatically annotating articles with Library of Congress Subject Headings (LCSH). We first use web scraping to extract keywords for a collection of articles from the Repository Analytics and Metrics Portal (RAMP). Then, we map these keywords to LCSH names for developing a gold-standard dataset. As a case study, using the subset of Biology-related LCSH concepts, we develop predictive models by formulating this task as a multi-label classification problem. Our experimental results demonstrate the viability of this approach for predicting LCSH for scholarly articles.

pdf bib
Contrasting distinct structured views to learn sentence embeddings
Antoine Simoulin | Benoit Crabbé

We propose a self-supervised method that builds sentence embeddings from the combination of diverse explicit syntactic structures of a sentence. We assume structure is crucial to building consistent representations as we expect sentence meaning to be a function of both syntax and semantic aspects. In this perspective, we hypothesize that some linguistic representations might be better adapted given the considered task or sentence. We, therefore, propose to learn individual representation functions for different syntactic frameworks jointly. Again, by hypothesis, all such functions should encode similar semantic information differently and consequently, be complementary for building better sentential semantic embeddings. To assess such hypothesis, we propose an original contrastive multi-view framework that induces an explicit interaction between models during the training phase. We make experiments combining various structures such as dependency, constituency, or sequential schemes. Our results outperform comparable methods on several tasks from standard sentence embedding benchmarks.

pdf bib
Discrete Reasoning Templates for Natural Language Understanding
Hadeel Al-Negheimish | Pranava Madhyastha | Alessandra Russo

Reasoning about information from multiple parts of a passage to derive an answer is an open challenge for reading-comprehension models. In this paper, we present an approach that reasons about complex questions by decomposing them to simpler subquestions that can take advantage of single-span extraction reading-comprehension models, and derives the final answer according to instructions in a predefined reasoning template. We focus on subtraction based arithmetic questions and evaluate our approach on a subset of the DROP dataset. We show that our approach is competitive with the state of the art while being interpretable and requires little supervision.

pdf bib
Development of Conversational AI for Sleep Coaching ProgrammeAI for Sleep Coaching Programme
Heereen Shim

Almost 30 % of the adult population in the world is experiencing or has experience insomnia. Cognitive Behaviour Therapy for insomnia (CBT-I) is one of the most effective treatment, but it has limitations on accessibility and availability. Utilising technology is one of the possible solutions, but existing methods neglect conversational aspects, which plays a critical role in sleep therapy. To address this issue, we propose a PhD project exploring potentials of developing conversational artificial intelligence (AI) for a sleep coaching programme, which is motivated by CBT-I treatment. This PhD project aims to develop natural language processing (NLP) algorithms to allow the system to interact naturally with a user and provide automated analytic system to support human experts. In this paper, we introduce research questions lying under three phases of the sleep coaching programme : triaging, monitoring the progress, and providing coaching. We expect this research project’s outcomes could contribute to the research domains of NLP and AI but also the healthcare field by providing a more accessible and affordable sleep treatment solution and an automated analytic system to lessen the burden of human experts.

pdf bib
Relating Relations : Meta-Relation Extraction from Online Health Forum Posts
Daniel Stickley

Relation extraction is a key task in knowledge extraction, and is commonly defined as the task of identifying relations that hold between entities in text. This thesis proposal addresses the specific task of identifying meta-relations, a higher order family of relations naturally construed as holding between other relations which includes temporal, comparative, and causal relations. More specifically, we aim to develop theoretical underpinnings and practical solutions for the challenges of (1) incorporating meta-relations into conceptualisations and annotation schemes for (lower-order) relations and named entities, (2) obtaining annotations for them with tolerable cognitive load on annotators, (3) creating models capable of reliably extracting meta-relations, and related to that (4) addressing the limited-data problem exacerbated by the introduction of meta-relations into the learning task. We explore recent works in relation extraction and discuss our plans to formally conceptualise meta-relations for the domain of user-generated health texts, and create a new dataset, annotation scheme and models for meta-relation extraction.

pdf bib
Beyond the English Web : Zero-Shot Cross-Lingual and Lightweight Monolingual Classification of RegistersEnglish Web: Zero-Shot Cross-Lingual and Lightweight Monolingual Classification of Registers
Liina Repo | Valtteri Skantsi | Samuel Rönnqvist | Saara Hellström | Miika Oinonen | Anna Salmela | Douglas Biber | Jesse Egbert | Sampo Pyysalo | Veronika Laippala

We explore cross-lingual transfer of register classification for web documents. Registers, that is, text varieties such as blogs or news are one of the primary predictors of linguistic variation and thus affect the automatic processing of language. We introduce two new register-annotated corpora, FreCORE and SweCORE, for French and Swedish. We demonstrate that deep pre-trained language models perform strongly in these languages and outperform previous state-of-the-art in English and Finnish. Specifically, we show 1) that zero-shot cross-lingual transfer from the large English CORE corpus can match or surpass previously published monolingual models, and 2) that lightweight monolingual classification requiring very little training data can reach or surpass our zero-shot performance. We further analyse classification results finding that certain registers continue to pose challenges in particular for cross-lingual transfer.

pdf bib
Why Find the Right One?
Payal Khullar

The present paper investigates the impact of the anaphoric one words in English on the Neural Machine Translation (NMT) process using English-Hindi as source and target language pair. As expected, the experimental results show that the state-of-the-art Google English-Hindi NMT system achieves significantly poorly on sentences containing anaphoric ones as compared to the sentences containing regular, non-anaphoric ones. But, more importantly, we note that amongst the anaphoric words, the noun class is clearly much harder for NMT than the determinatives. This reaffirms the linguistic disparity of the two phenomenon in recent theoretical syntactic literature, despite the obvious surface similarities.