Proceedings of the 2nd Workshop on New Frontiers in Summarization

Lu Wang, Jackie Chi Kit Cheung, Giuseppe Carenini, Fei Liu (Editors)

Anthology ID:
Hong Kong, China
Association for Computational Linguistics
Bib Export formats:

pdf bib
Proceedings of the 2nd Workshop on New Frontiers in Summarization
Lu Wang | Jackie Chi Kit Cheung | Giuseppe Carenini | Fei Liu

pdf bib
Answering Naturally : Factoid to Full length Answer Generation
Vaishali Pal | Manish Shrivastava | Irshad Bhat

In recent years, the task of Question Answering over passages, also pitched as a reading comprehension, has evolved into a very active research area. A reading comprehension system extracts a span of text, comprising of named entities, dates, small phrases, etc., which serve as the answer to a given question. However, these spans of text would result in an unnatural reading experience in a conversational system. Usually, dialogue systems solve this issue by using template-based language generation. These systems, though adequate for a domain specific task, are too restrictive and predefined for a domain independent system. In order to present the user with a more conversational experience, we propose a pointer generator based full-length answer generator which can be used with most QA systems. Our system generates a full length answer given a question and the extracted factoid / span answer without relying on the passage from where the answer was extracted. We also present a dataset of 315000 question, factoid answer and full length answer triples. We have evaluated our system using ROUGE-1,2,L and BLEU and achieved 74.05 BLEU score and 86.25 Rogue-L score.

pdf bib
Abstractive Timeline Summarization
Julius Steen | Katja Markert

Timeline summarization (TLS) automatically identifies key dates of major events and provides short descriptions of what happened on these dates. Previous approaches to TLS have focused on extractive methods. In contrast, we suggest an abstractive timeline summarization system. Our system is entirely unsupervised, which makes it especially suited to TLS where there are very few gold summaries available for training of supervised systems. In addition, we present the first abstractive oracle experiments for TLS. Our system outperforms extractive competitors in terms of ROUGE when the number of input documents is high and the output requires strong compression. In these cases, our oracle experiments confirm that our approach also has a higher upper bound for ROUGE scores than extractive methods. A study with human judges shows that our abstractive system also produces output that is easy to read and understand.

pdf bib
Learning to Create Sentence Semantic Relation Graphs for Multi-Document Summarization
Diego Antognini | Boi Faltings

Linking facts across documents is a challenging task, as the language used to express the same information in a sentence can vary significantly, which complicates the task of multi-document summarization. Consequently, existing approaches heavily rely on hand-crafted features, which are domain-dependent and hard to craft, or additional annotated data, which is costly to gather. To overcome these limitations, we present a novel method, which makes use of two types of sentence embeddings : universal embeddings, which are trained on a large unrelated corpus, and domain-specific embeddings, which are learned during training. To this end, we develop SemSentSum, a fully data-driven model able to leverage both types of sentence embeddings by building a sentence semantic relation graph. SemSentSum achieves competitive results on two types of summary, consisting of 665 bytes and 100 words. Unlike other state-of-the-art models, neither hand-crafted features nor additional annotated data are necessary, and the method is easily adaptable for other tasks. To our knowledge, we are the first to use multiple sentence embeddings for the task of multi-document summarization.

pdf bib
Towards Annotating and Creating Summary Highlights at Sub-sentence Level
Kristjan Arumae | Parminder Bhatia | Fei Liu

Highlighting is a powerful tool to pick out important content and emphasize. Creating summary highlights at the sub-sentence level is particularly desirable, because sub-sentences are more concise than whole sentences. They are also better suited than individual words and phrases that can potentially lead to disfluent, fragmented summaries. In this paper we seek to generate summary highlights by annotating summary-worthy sub-sentences and teaching classifiers to do the same. We frame the task as jointly selecting important sentences and identifying a single most informative textual unit from each sentence. This formulation dramatically reduces the task complexity involved in sentence compression. Our study provides new benchmarks and baselines for generating highlights at the sub-sentence level.

pdf bib
SAMSum Corpus : A Human-annotated Dialogue Dataset for Abstractive SummarizationSAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization
Bogdan Gliwa | Iwona Mochol | Maciej Biesek | Aleksander Wawer

This paper introduces the SAMSum Corpus, a new dataset with abstractive dialogue summaries. We investigate the challenges it poses for automated summarization by testing several models and comparing their results with those obtained on a corpus of news articles. We show that model-generated summaries of dialogues achieve higher ROUGE scores than the model-generated summaries of news in contrast with human evaluators’ judgement. This suggests that a challenging task of abstractive dialogue summarization requires dedicated models and non-standard quality measures. To our knowledge, our study is the first attempt to introduce a high-quality chat-dialogues corpus, manually annotated with abstractive summarizations, which can be used by the research community for further studies.

pdf bib
A Closer Look at Data Bias in Neural Extractive Summarization Models
Ming Zhong | Danqing Wang | Pengfei Liu | Xipeng Qiu | Xuanjing Huang

In this paper, we take stock of the current state of summarization datasets and explore how different factors of datasets influence the generalization behaviour of neural extractive summarization models. Specifically, we first propose several properties of datasets, which matter for the generalization of summarization models. Then we build the connection between priors residing in datasets and model designs, analyzing how different properties of datasets influence the choices of model structure design and training methods. Finally, by taking a typical dataset as an example, we rethink the process of the model design based on the experience of the above analysis. We demonstrate that when we have a deep understanding of the characteristics of datasets, a simple approach can bring significant improvements to the existing state-of-the-art model.

pdf bib
Analyzing Sentence Fusion in Abstractive Summarization
Logan Lebanoff | John Muchovej | Franck Dernoncourt | Doo Soon Kim | Seokhwan Kim | Walter Chang | Fei Liu

While recent work in abstractive summarization has resulted in higher scores in automatic metrics, there is little understanding on how these systems combine information taken from multiple document sentences. In this paper, we analyze the outputs of five state-of-the-art abstractive summarizers, focusing on summary sentences that are formed by sentence fusion. We ask assessors to judge the grammaticality, faithfulness, and method of fusion for summary sentences. Our analysis reveals that system sentences are mostly grammatical, but often fail to remain faithful to the original article.

pdf bib
Summarizing Relationships for Interactive Concept Map Browsers
Abram Handler | Premkumar Ganeshkumar | Brendan O’Connor | Mohamed AlTantawy

Concept maps are visual summaries, structured as directed graphs : important concepts from a dataset are displayed as vertexes, and edges between vertexes show natural language descriptions of the relationships between the concepts on the map. Thus far, preliminary attempts at automatically creating concept maps have focused on building static summaries. However, in interactive settings, users will need to dynamically investigate particular relationships between pairs of concepts. For instance, a historian using a concept map browser might decide to investigate the relationship between two politicians in a news archive. We present a model which responds to such queries by returning one or more short, importance-ranked, natural language descriptions of the relationship between two requested concepts, for display in a visual interface. Our model is trained on a new public dataset, collected for this task.