Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing

Simon Ostermann, Sheng Zhang, Michael Roth, Peter Clark (Editors)

Anthology ID:
Hong Kong, China
Association for Computational Linguistics
Bib Export formats:

pdf bib
Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing
Simon Ostermann | Sheng Zhang | Michael Roth | Peter Clark

pdf bib
Cracking the Contextual Commonsense Code : Understanding Commonsense Reasoning Aptitude of Deep Contextual Representations
Jeff Da | Jungo Kasai

Pretrained deep contextual representations have advanced the state-of-the-art on various commonsense NLP tasks, but we lack a concrete understanding of the capability of these models. Thus, we investigate and challenge several aspects of BERT’s commonsense representation abilities. First, we probe BERT’s ability to classify various object attributes, demonstrating that BERT shows a strong ability in encoding various commonsense features in its embedding space, but is still deficient in many areas. Next, we show that, by augmenting BERT’s pretraining data with additional data related to the deficient attributes, we are able to improve performance on a downstream commonsense reasoning task while using a minimal amount of data. Finally, we develop a method of fine-tuning knowledge graphs embeddings alongside BERT and show the continued importance of explicit knowledge graphs.

pdf bib
Towards Generalizable Neuro-Symbolic Systems for Commonsense Question Answering
Kaixin Ma | Jonathan Francis | Quanyang Lu | Eric Nyberg | Alessandro Oltramari

Non-extractive commonsense QA remains a challenging AI task, as it requires systems to reason about, synthesize, and gather disparate pieces of information, in order to generate responses to queries. Recent approaches on such tasks show increased performance, only when models are either pre-trained with additional information or when domain-specific heuristics are used, without any special consideration regarding the knowledge resource type. In this paper, we perform a survey of recent commonsense QA methods and we provide a systematic analysis of popular knowledge resources and knowledge-integration methods, across benchmarks from multiple commonsense datasets. Our results and analysis show that attention-based injection seems to be a preferable choice for knowledge integration and that the degree of domain overlap, between knowledge bases and datasets, plays a crucial role in determining model success.

pdf bib
Commonsense about Human Senses : Labeled Data Collection Processes
Ndapa Nakashole

We consider the problem of extracting from text commonsense knowledge pertaining to human senses such as sound and smell. First, we consider the problem of recognizing mentions of human senses in text. Our contribution is a method for acquiring labeled data. Experiments show the effectiveness of our proposed data labeling approach when used with standard machine learning models on the task of sense recognition in text. Second, we propose to extract novel, common sense relationships pertaining to sense perception concepts. Our contribution is a process for generating labeled data by leveraging large corpora and crowdsourcing questionnaires.

pdf bib
IIT-KGP at COIN 2019 : Using pre-trained Language Models for modeling Machine ComprehensionIIT-KGP at COIN 2019: Using pre-trained Language Models for modeling Machine Comprehension
Prakhar Sharma | Sumegh Roychowdhury

In this paper, we describe our system for COIN 2019 Shared Task 1 : Commonsense Inference in Everyday Narrations. We show the power of leveraging state-of-the-art pre-trained language models such as BERT(Bidirectional Encoder Representations from Transformers) and XLNet over other Commonsense Knowledge Base Resources such as ConceptNet and NELL for modeling machine comprehension. We used an ensemble of BERT-Large and XLNet-Large. Experimental results show that our model give substantial improvements over the baseline and other systems incorporating knowledge bases. We bagged 2nd position on the final test set leaderboard with an accuracy of 90.5 %

pdf bib
Pingan Smart Health and SJTU at COIN-Shared Task : utilizing Pre-trained Language Models and Common-sense Knowledge in Machine Reading TasksSJTU at COIN - Shared Task: utilizing Pre-trained Language Models and Common-sense Knowledge in Machine Reading Tasks
Xiepeng Li | Zhexi Zhang | Wei Zhu | Zheng Li | Yuan Ni | Peng Gao | Junchi Yan | Guotong Xie

To solve the shared tasks of COIN : COmmonsense INference in Natural Language Processing) Workshop in, we need explore the impact of knowledge representation in modeling commonsense knowledge to boost performance of machine reading comprehension beyond simple text matching. There are two approaches to represent knowledge in the low-dimensional space. The first is to leverage large-scale unsupervised text corpus to train fixed or contextual language representations. The second approach is to explicitly express knowledge into a knowledge graph (KG), and then fit a model to represent the facts in the KG. We have experimented both (a) improving the fine-tuning of pre-trained language models on a task with a small dataset size, by leveraging datasets of similar tasks ; and (b) incorporating the distributional representations of a KG onto the representations of pre-trained language models, via simply concatenation or multi-head attention. We find out that : (a) for task 1, first fine-tuning on larger datasets like RACE (Lai et al., 2017) and SWAG (Zellersetal.,2018), and then fine-tuning on the target task improve the performance significantly ; (b) for task 2, we find out the incorporating a KG of commonsense knowledge, WordNet (Miller, 1995) into the Bert model (Devlin et al., 2018) is helpful, however, it will hurts the performace of XLNET (Yangetal.,2019), a more powerful pre-trained model.

pdf bib
BLCU-NLP at COIN-Shared Task1 : Stagewise Fine-tuning BERT for Commonsense Inference in Everyday NarrationsBLCU-NLP at COIN-Shared Task1: Stagewise Fine-tuning BERT for Commonsense Inference in Everyday Narrations
Chunhua Liu | Dong Yu

This paper describes our system for COIN Shared Task 1 : Commonsense Inference in Everyday Narrations. To inject more external knowledge to better reason over the narrative passage, question and answer, the system adopts a stagewise fine-tuning method based on pre-trained BERT model. More specifically, the first stage is to fine-tune on addi- tional machine reading comprehension dataset to learn more commonsense knowledge. The second stage is to fine-tune on target-task (MCScript2.0) with MCScript (2018) dataset assisted. Experimental results show that our system achieves significant improvements over the baseline systems with 84.2 % accuracy on the official test dataset.

pdf bib
Diversity-aware Event Prediction based on a Conditional Variational Autoencoder with Reconstruction
Hirokazu Kiyomaru | Kazumasa Omura | Yugo Murawaki | Daisuke Kawahara | Sadao Kurohashi

Typical event sequences are an important class of commonsense knowledge. Formalizing the task as the generation of a next event conditioned on a current event, previous work in event prediction employs sequence-to-sequence (seq2seq) models. However, what can happen after a given event is usually diverse, a fact that can hardly be captured by deterministic models. In this paper, we propose to incorporate a conditional variational autoencoder (CVAE) into seq2seq for its ability to represent diverse next events as a probabilistic distribution. We further extend the CVAE-based seq2seq with a reconstruction mechanism to prevent the model from concentrating on highly typical events. To facilitate fair and systematic evaluation of the diversity-aware models, we also extend existing evaluation datasets by tying each current event to multiple next events. Experiments show that the CVAE-based models drastically outperform deterministic models in terms of precision and that the reconstruction mechanism improves the recall of CVAE-based models without sacrificing precision.

pdf bib
Can a Gorilla Ride a Camel? Learning Semantic Plausibility from Text
Ian Porada | Kaheer Suleman | Jackie Chi Kit Cheung

Modeling semantic plausibility requires commonsense knowledge about the world and has been used as a testbed for exploring various knowledge representations. Previous work has focused specifically on modeling physical plausibility and shown that distributional methods fail when tested in a supervised setting. At the same time, distributional models, namely large pretrained language models, have led to improved results for many natural language understanding tasks. In this work, we show that these pretrained language models are in fact effective at modeling physical plausibility in the supervised setting. We therefore present the more difficult problem of learning to model physical plausibility directly from text. We create a training set by extracting attested events from a large corpus, and we provide a baseline for training on these attested events in a self-supervised manner and testing on a physical plausibility task. We believe results could be further improved by injecting explicit commonsense knowledge into a distributional model.