Proceedings of the 13th International Conference on Computational Semantics - Long Papers

Simon Dobnik, Stergios Chatzikyriakidis, Vera Demberg (Editors)


Anthology ID:
W19-04
Month:
May
Year:
2019
Address:
Gothenburg, Sweden
Venues:
IWCS | WS
SIG:
SIGSEM
Publisher:
Association for Computational Linguistics
URL:
https://aclanthology.org/W19-04
DOI:
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
https://aclanthology.org/W19-04.pdf

pdf bib
Proceedings of the 13th International Conference on Computational Semantics - Long Papers
Simon Dobnik | Stergios Chatzikyriakidis | Vera Demberg

pdf bib
Projecting Temporal Properties, Events and Actions
Tim Fernando

Temporal notions based on a finite set A of properties are represented in strings, on which projections are defined that vary the granularity A. The structure of properties in A is elaborated to describe statives, events and actions, subject to a distinction in meaning (advocated by Levin and Rappaport Hovav) between what the lexicon prescribes and what a context of use supplies. The projections proposed are deployed as labels for records and record types amenable to finite-state methods.A of properties are represented in strings, on which projections are defined that vary the granularity A. The structure of properties in A is elaborated to describe statives, events and actions, subject to a distinction in meaning (advocated by Levin and Rappaport Hovav) between what the lexicon prescribes and what a context of use supplies. The projections proposed are deployed as labels for records and record types amenable to finite-state methods.

pdf bib
A Type-coherent, Expressive Representation as an Initial Step to Language Understanding
Gene Louis Kim | Lenhart Schubert

A growing interest in tasks involving language understanding by the NLP community has led to the need for effective semantic parsing and inference. Modern NLP systems use semantic representations that do not quite fulfill the nuanced needs for language understanding : adequately modeling language semantics, enabling general inferences, and being accurately recoverable. This document describes underspecified logical forms (ULF) for Episodic Logic (EL), which is an initial form for a semantic representation that balances these needs. ULFs fully resolve the semantic type structure while leaving issues such as quantifier scope, word sense, and anaphora unresolved ; they provide a starting point for further resolution into EL, and enable certain structural inferences without further resolution. This document also presents preliminary results of creating a hand-annotated corpus of ULFs for the purpose of training a precise ULF parser, showing a three-person pairwise interannotator agreement of 0.88 on confident annotations. We hypothesize that a divide-and-conquer approach to semantic parsing starting with derivation of ULFs will lead to semantic analyses that do justice to subtle aspects of linguistic meaning, and will enable construction of more accurate semantic parsers.

pdf bib
An Improved Approach for Semantic Graph Composition with CCGCCG
Austin Blodgett | Nathan Schneider

This paper builds on previous work using Combinatory Categorial Grammar (CCG) to derive a transparent syntax-semantics interface for Abstract Meaning Representation (AMR) parsing. We define new semantics for the CCG combinators that is better suited to deriving AMR graphs. In particular, we define relation-wise alternatives for the application and composition combinators : these require that the two constituents being combined overlap in one AMR relation. We also provide a new semantics for type raising, which is necessary for certain constructions. Using these mechanisms, we suggest an analysis of eventive nouns, which present a challenge for deriving AMR graphs. Our theoretical analysis will facilitate future work on robust and transparent AMR parsing using CCG.

pdf bib
Towards a Compositional Analysis of German Light Verb Constructions (LVCs) Combining Lexicalized Tree Adjoining Grammar (LTAG) with Frame SemanticsGerman Light Verb Constructions (LVCs) Combining Lexicalized Tree Adjoining Grammar (LTAG) with Frame Semantics
Jens Fleischhauer | Thomas Gamerschlag | Laura Kallmeyer | Simon Petitjean

Complex predicates formed of a semantically ‘light’ verbal head and a noun or verb which contributes the major part of the meaning are frequently referred to as ‘light verb constructions’ (LVCs). In the paper, we present a case study of LVCs with the German posture verb stehen ‘stand’. In our account, we model the syntactic as well as semantic composition of such LVCs by combining Lexicalized Tree Adjoining Grammar (LTAG) with frames. Starting from the analysis of the literal uses of posture verbs, we show how the meaning components of the literal uses are systematically exploited in the interpretation of stehen-LVCs. The paper constitutes an important step towards a compositional and computational analysis of LVCs. We show that LTAG allows us to separate constructional from lexical meaning components and that frames enable elegant generalizations over event types and related constraints.

pdf bib
Words are Vectors, Dependencies are Matrices : Learning Word Embeddings from Dependency Graphs
Paula Czarnowska | Guy Emerson | Ann Copestake

Distributional Semantic Models (DSMs) construct vector representations of word meanings based on their contexts. Typically, the contexts of a word are defined as its closest neighbours, but they can also be retrieved from its syntactic dependency relations. In this work, we propose a new dependency-based DSM. The novelty of our model lies in associating an independent meaning representation, a matrix, with each dependency-label. This allows it to capture specifics of the relations between words and contexts, leading to good performance on both intrinsic and extrinsic evaluation tasks. In addition to that, our model has an inherent ability to represent dependency chains as products of matrices which provides a straightforward way of handling further contexts of a word.

pdf bib
Temporal and Aspectual Entailment
Thomas Kober | Sander Bijl de Vroe | Mark Steedman

Inferences regarding Jane’s arrival in London from predications such as Jane is going to London or Jane has gone to London depend on tense and aspect of the predications. Tense determines the temporal location of the predication in the past, present or future of the time of utterance. The aspectual auxiliaries on the other hand specify the internal constituency of the event, i.e. whether the event of going to London is completed and whether its consequences hold at that time or not. While tense and aspect are among the most important factors for determining natural language inference, there has been very little work to show whether modern embedding models capture these semantic concepts. In this paper we propose a novel entailment dataset and analyse the ability of contextualised word representations to perform inference on predications across aspectual types and tenses. We show that they encode a substantial amount of information relating to tense and aspect, but fail to consistently model inferences that require reasoning with these semantic properties.

pdf bib
Aligning Open IE Relations and KB Relations using a Siamese Network Based on Word EmbeddingIE Relations and KB Relations using a Siamese Network Based on Word Embedding
Rifki Afina Putri | Giwon Hong | Sung-Hyon Myaeng

Open Information Extraction (Open IE) aims at generating entity-relation-entity triples from a large amount of text, aiming at capturing key semantics of the text. Given a triple, the relation expresses the type of semantic relation between the entities. Although relations from an Open IE system are more extensible than those used in a traditional Information Extraction system and a Knowledge Base (KB) such as Knowledge Graphs, the former lacks in semantics ; an Open IE relation is simply a sequence of words, whereas a KB relation has a predefined meaning. As a way to provide a meaning to an Open IE relation, we attempt to align it with one of the predefined set of relations used in a KB. Our approach is to use a Siamese network that compares two sequences of word embeddings representing an Open IE relation and a predefined KB relation. In order to make the approach practical, we automatically generate a training dataset using a distant supervision approach instead of relying on a hand-labeled dataset. Our experiment shows that the proposed method can capture the relational semantics better than the recent approaches.

pdf bib
The Effect of Context on Metaphor Paraphrase Aptness Judgments
Yuri Bizzoni | Shalom Lappin

We conduct two experiments to study the effect of context on metaphor paraphrase aptness judgments. The first is an AMT crowd source task in which speakers rank metaphor-paraphrase candidate sentence pairs in short document contexts for paraphrase aptness. In the second we train a composite DNN to predict these human judgments, first in binary classifier mode, and then as gradient ratings. We found that for both mean human judgments and our DNN’s predictions, adding document context compresses the aptness scores towards the center of the scale, raising low out-of-context ratings and decreasing high out-of-context scores. We offer a provisional explanation for this compression effect.

pdf bib
Predicting Word Concreteness and Imagery
Jean Charbonnier | Christian Wartena

Concreteness of words has been studied extensively in psycholinguistic literature. A number of datasets have been created with average values for perceived concreteness of words. We show that we can train a regression model on these data, using word embeddings and morphological features, that can predict these concreteness values with high accuracy. We evaluate the model on 7 publicly available datasets. Only for a few small subsets of these datasets prediction of concreteness values are found in the literature. Our results clearly outperform the reported results for these datasets.

pdf bib
Learning to Explicitate Connectives with Seq2Seq Network for Implicit Discourse Relation ClassificationSeq2Seq Network for Implicit Discourse Relation Classification
Wei Shi | Vera Demberg

Implicit discourse relation classification is one of the most difficult steps in discourse parsing. The difficulty stems from the fact that the coherence relation must be inferred based on the content of the discourse relational arguments. Therefore, an effective encoding of the relational arguments is of crucial importance. We here propose a new model for implicit discourse relation classification, which consists of a classifier, and a sequence-to-sequence model which is trained to generate a representation of the discourse relational arguments by trying to predict the relational arguments including a suitable implicit connective. Training is possible because such implicit connectives have been annotated as part of the PDTB corpus. Along with a memory network, our model could generate more refined representations for the task. And on the now standard 11-way classification, our method outperforms the previous state of the art systems on the PDTB benchmark on multiple settings including cross validation.

pdf bib
Using Multi-Sense Vector Embeddings for Reverse Dictionaries
Michael A. Hedderich | Andrew Yates | Dietrich Klakow | Gerard de Melo

Popular word embedding methods such as word2vec and GloVe assign a single vector representation to each word, even if a word has multiple distinct meanings. Multi-sense embeddings instead provide different vectors for each sense of a word. However, they typically can not serve as a drop-in replacement for conventional single-sense embeddings, because the correct sense vector needs to be selected for each word. In this work, we study the effect of multi-sense embeddings on the task of reverse dictionaries. We propose a technique to easily integrate them into an existing neural network architecture using an attention mechanism. Our experiments demonstrate that large improvements can be obtained when employing multi-sense embeddings both in the input sequence as well as for the target representation. An analysis of the sense distributions and of the learned attention is provided as well.

pdf bib
Frame Identification as Categorization : Exemplars vs Prototypes in Embeddingland
Jennifer Sikos | Sebastian Padó

Categorization is a central capability of human cognition, and a number of theories have been developed to account for properties of categorization. Even though many tasks in semantics also involve categorization of some kind, theories of categorization do not play a major role in contemporary research in computational linguistics. This paper follows the idea that embedding-based models of semantics lend themselves well to being formulated in terms of classical categorization theories. The benefit is a space of model families that enables (a) the formulation of hypotheses about the impact of major design decisions, and (b) a transparent assessment of these decisions. We instantiate this idea on the task of frame-semantic frame identification. We define four models that cross two design variables : (a) the choice of prototype vs. exemplar categorization, corresponding to different degrees of generalization applied to the input ; and (b) the presence vs. absence of a fine-tuning step, corresponding to generic vs. task-adaptive categorization. We find that for frame identification, generalization and task-adaptive categorization both yield substantial benefits. Our prototype-based, fine-tuned model, which combines the best choices for these variables, establishes a new state of the art in frame identification.