Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

Alexandra Balahur, Roman Klinger, Veronique Hoste, Carlo Strapparava, Orphee De Clercq (Editors)


Anthology ID:
W19-13
Month:
June
Year:
2019
Address:
Minneapolis, USA
Venues:
NAACL | WASSA | WS
SIG:
Publisher:
Association for Computational Linguistics
URL:
https://aclanthology.org/W19-13
DOI:
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
https://aclanthology.org/W19-13.pdf

pdf bib
Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
Alexandra Balahur | Roman Klinger | Veronique Hoste | Carlo Strapparava | Orphee De Clercq

pdf bib
A Soft Label Strategy for Target-Level Sentiment Classification
Da Yin | Xiao Liu | Xiuyu Wu | Baobao Chang

In this paper, we propose a soft label approach to target-level sentiment classification task, in which a history-based soft labeling model is proposed to measure the possibility of a context word as an opinion word. We also apply a convolution layer to extract local active features, and introduce positional weights to take relative distance information into consideration. In addition, we obtain more informative target representation by training with context tokens together to make deeper interaction between target and context tokens. We conduct experiments on SemEval 2014 datasets and the experimental results show that our approach significantly outperforms previous models and gives state-of-the-art results on these datasets.

pdf bib
Online abuse detection : the value of preprocessing and neural attention models
Dhruv Kumar | Robin Cohen | Lukasz Golab

We propose an attention-based neural network approach to detect abusive speech in online social networks. Our approach enables more effective modeling of context and the semantic relationships between words. We also empirically evaluate the value of text pre-processing techniques in addressing the challenge of out-of-vocabulary words in toxic content. Finally, we conduct extensive experiments on the Wikipedia Talk page datasets, showing improved predictive power over the previous state-of-the-art.

pdf bib
Using Structured Representation and Data : A Hybrid Model for Negation and Sentiment in Customer Service Conversations
Amita Misra | Mansurul Bhuiyan | Jalal Mahmud | Saurabh Tripathy

Twitter customer service interactions have recently emerged as an effective platform to respond and engage with customers. In this work, we explore the role of negation in customer service interactions, particularly applied to sentiment analysis. We define rules to identify true negation cues and scope more suited to conversational data than existing general review data. Using semantic knowledge and syntactic structure from constituency parse trees, we propose an algorithm for scope detection that performs comparable to state of the art BiLSTM. We further investigate the results of negation scope detection for the sentiment prediction task on customer service conversation data using both a traditional SVM and a Neural Network. We propose an antonym dictionary based method for negation applied to a combination CNN-LSTM for sentiment analysis. Experimental results show that the antonym-based method outperforms the previous lexicon-based and Neural Network methods.

pdf bib
When Numbers Matter ! : Detecting Sarcasm in Numerical Portions of Text
Abhijeet Dubey | Lakshya Kumar | Arpan Somani | Aditya Joshi | Pushpak Bhattacharyya

Research in sarcasm detection spans almost a decade. However a particular form of sarcasm remains unexplored : sarcasm expressed through numbers, which we estimate, forms about 11 % of the sarcastic tweets in our dataset. The sentence ‘Love waking up at 3 am’ is sarcastic because of the number. In this paper, we focus on detecting sarcasm in tweets arising out of numbers. Initially, to get an insight into the problem, we implement a rule-based and a statistical machine learning-based (ML) classifier. The rule-based classifier conveys the crux of the numerical sarcasm problem, namely, incongruity arising out of numbers. The statistical ML classifier uncovers the indicators i.e., features of such sarcasm. The actual system in place, however, are two deep learning (DL) models, CNN and attention network that obtains an F-score of 0.93 and 0.91 on our dataset of tweets containing numbers. To the best of our knowledge, this is the first line of research investigating the phenomenon of sarcasm arising out of numbers, culminating in a detector thereof.

pdf bib
Cross-lingual Subjectivity Detection for Resource Lean Languages
Ida Amini | Samane Karimi | Azadeh Shakery

Wide and universal changes in the web content due to the growth of web 2 applications increase the importance of user-generated content on the web. Therefore, the related research areas such as sentiment analysis, opinion mining and subjectivity detection receives much attention from the research community. Due to the diverse languages that web-users use to express their opinions and sentiments, research areas like subjectivity detection should present methods which are practicable on all languages. An important prerequisite to effectively achieve this aim is considering the limitations in resource-lean languages. In this paper, cross-lingual subjectivity detection on resource lean languages is investigated using two different approaches : a language-model based and a learning-to-rank approach. Experimental results show the impact of different factors on the performance of subjectivity detection methods using English resources to detect the subjectivity score of Persian documents. The experiments demonstrate that the proposed learning-to-rank method outperforms the baseline method in ranking documents based on their subjectivity degree.